基于第一性原理计算IrSb压力相变

刘思远 缪宇 马雪姣 李鑫 高文泉 程宇衡 刘艳辉

刘思远, 缪宇, 马雪姣, 李鑫, 高文泉, 程宇衡, 刘艳辉. 基于第一性原理计算IrSb压力相变[J]. 高压物理学报, 2019, 33(5): 052203. doi: 10.11858/gywlxb.20190716
引用本文: 刘思远, 缪宇, 马雪姣, 李鑫, 高文泉, 程宇衡, 刘艳辉. 基于第一性原理计算IrSb压力相变[J]. 高压物理学报, 2019, 33(5): 052203. doi: 10.11858/gywlxb.20190716
LIU Siyuan, MIAO Yu, MA Xuejiao, LI Xin, GAO Wenquan, CHENG Yuheng, LIU Yanhui. Pressure-Induced Phase Transformations of IrSb from First-Principles Calculations[J]. Chinese Journal of High Pressure Physics, 2019, 33(5): 052203. doi: 10.11858/gywlxb.20190716
Citation: LIU Siyuan, MIAO Yu, MA Xuejiao, LI Xin, GAO Wenquan, CHENG Yuheng, LIU Yanhui. Pressure-Induced Phase Transformations of IrSb from First-Principles Calculations[J]. Chinese Journal of High Pressure Physics, 2019, 33(5): 052203. doi: 10.11858/gywlxb.20190716

基于第一性原理计算IrSb压力相变

doi: 10.11858/gywlxb.20190716
基金项目: 国家自然科学基金(11764043);吉林省科技发展计划项目自然科学基金(20180101226JC)
详细信息
    作者简介:

    刘思远(1994-),男,硕士,主要从事材料的第一性原理计算研究. E-mail:syliu1218@163.com

    通讯作者:

    刘艳辉(1971-),女,博士,主要从事材料的第一性原理计算研究. E-mail:yhliu@ybu.edu.cn

  • 中图分类号: O521.2

Pressure-Induced Phase Transformations of IrSb from First-Principles Calculations

  • 摘要: 基于第一性原理并结合粒子群优化算法的卡里普索(CALYPSO)晶体结构预测方法,研究在0~100 GPa压力下,过渡金属铱和类金属锑组成的化合物IrSb的相变行为和物理性质。研究发现:在常压下,具有立方结构$\alpha $-IrSb相的空间群为P63/mmc,与实验结果一致;在压力为16.4 GPa时,发现了一种新型立方结构$\beta $-IrSb相,其空间群为C2/c;在76.5~100 GPa压力范围内,其稳定结构为空间群是P-1的$\gamma $-IrSb相。声子色散关系计算结果表明:$\alpha $-IrSb相、$\beta $-IrSb相和$\gamma $-IrSb相在各自的布里渊区没有出现虚频,具有动力学稳定性。计算得出3个相的形成焓均小于零,说明3个相均具有热力学稳定性。能带结构计算结果表明:3个相的晶体结构在费米面附近导带和价带均发生交叠,3个相均呈现金属性。计算并讨论了各相的电荷转移情况,研究发现:Ir原子是受主,Sb原子是施主,电荷从Sb原子向Ir原子转移。

     

  • 图  IrSb的热力学焓差曲线(a)以及$\alpha $-IrSb相、$\beta $-IrSb相和$\gamma $-IrSb相体积随压强变化(b)

    Figure  1.  Calculated enthalpy difference as a function of pressure relative to IrSb (a) and calculated volume versus pressure of $\alpha $-IrSb,$\beta $-IrSb and $\gamma $-IrSb (b)

    图  $\alpha $-IrSb相、$\beta $-IrSb相和$\gamma $-IrSb相的晶体结构

    Figure  2.  Crystal structures of $\alpha $-IrSb,$\beta $-IrSb and $\gamma $-IrSb

    图  $\alpha $-IrSb、$\beta $-IrSb和$\gamma $-IrSb相的声子色散关系与投影态密度

    Figure  3.  Phonon-dispersion curves and the projected density of states of $\alpha $-IrSb,$\beta $-IrSb, and $\gamma $-IrSb

    图  $\alpha $-IrSb相、$\beta $-IrSb相和$\gamma $-IrSb相的能带结构和电子态密度

    Figure  4.  Band structure and partial density of states of $\alpha $-IrSb,$\beta $-IrSb and $\gamma $-IrSb

    表  1  $\alpha $-IrSb相、$\beta $-IrSb相和$\gamma $-IrSb的晶格参数和原子位置

    Table  1.   Lattice parameters and atomic coordinates of $\alpha $-IrSb, $\beta $-IrSb and $\gamma $-IrSb

    PhasePressue/GPaSpace groupLattice parametersWyckoff positions
    $\alpha $-IrSb0P63/mmca=4.082 Å,b=4.082 Å,c=5.634 Å
    $\alpha $=90.0°,$\beta $=90.0°,$\gamma $=120.0°
    Ir1:2a (0, 0, 0)
    Sb1:2c (0.333, 0.000, 0.500)
    $\beta $-IrSb16.4C2/ca=11.207 Å,b=5.326 Å,c=5.061 Å
    $\alpha $=90.0°,$\beta $=110.7°,$\gamma $=90.0°
    Ir1:8f (0.400, 0.673, 1.361)
    Sb1:8f (0.000, 0.500, 0.152)
    $\gamma $-IrSb76.5P-1a=4.812 Å,b=5.034 Å,c=5.033 Å
    $\alpha $=98.8°,$\beta $=99.6°,$\gamma $=92.1°
    Ir1:2i (0.217, 0.525, 0.204)
    Ir3:2i (0.676, 0.877, 0.183)
    Sb1:2i (0.200, 0.032, 0.297)
    Sb3:2i (0.722, 0.393, 0.289)
    下载: 导出CSV

    表  2  $\alpha $-IrSb相、$\beta $-IrSb相和$\gamma $-IrSb相的Bader电荷转移

    Table  2.   Calculated Bader charges of $\alpha $-IrSb, $\beta $-IrSb and $\gamma $-IrSb

    PhasePressue/GPaSpace groupAtomNumberCharge value/e$\delta $/e
    $\alpha $–IrSb0P63/mmcIr29.60–0.60
    Sb24.40 0.60
    $\beta $–IrSb16.4C2/cIr89.66–0.66
    Sb84.34 0.66
    $\gamma $–IrSb76.5P-1Ir29.64–0.64
    29.75–0.75
    Sb24.30 0.70
    24.31 0.69
    下载: 导出CSV
  • [1] HEMLEY R J. Effects of high pressure on molecules [J]. Annual Review of Physical Chemistry, 2000, 51(1): 763–800. doi: 10.1146/annurev.physchem.51.1.763
    [2] SCHTTION V, BINI R. Molecules under extreme conditions: chemical reactions at high pressure [J]. Physical Chemistry Chemical Physics, 2003, 5(10): 1951–1965. doi: 10.1039/b301381b
    [3] GROCCHALA W, HOFFMANN R, FENG J, et al. The chemical imagination at work in very tight places [J]. Cheminform, 2007, 46(20): 3620–3642.
    [4] CERENIUS Y, DUBROVINSKY L. Compressibility measurements on iridium [J]. Journal of Alloys and Compounds, 2000, 306: 26–29. doi: 10.1016/S0925-8388(00)00767-2
    [5] WIBERG E, WIBERGN, HOLLEMAN A F. Inorganic chemistry [M]. Academic Press, 2001.
    [6] KUZMIN R N. X-ray diffraction study of the structure of IrSb [J]. Soviet Physics, Crystallography, 1958, 3(3): 366–368.
    [7] ZHURAVLEV N N, ZHDANOV G S. X-ray diffraction determination of the structure of CoSb3, RhSb3, and IrSb3 [J]. Soviet Physics, Crystallography, 1956, 1(5): 404.
    [8] HULLIGER F. Semiconducting compounds with skutterudite structure [J]. Helvetica Physica Acta, 1961, 34: 782–786.
    [9] GLEN A, SLACK, VENETA G, TSOUKALA. Some properties of semiconducting IrSb3 [J]. Journal of Applied Physics, 1994, 76: 1665. doi: 10.1063/1.357750
    [10] 杨明宇, 杨倩, 张勃, 等. 5d过渡金属原子掺杂六方氮化铝单层的磁性及自旋轨道耦合效应:可能存在的二维长程磁有序 [J]. 物理学报, 2017, 66(6): 063102.

    YANG M Y, YANG Q, ZHANG B, et al. Electronic structures, magnetic properties and spin-orbital coupling effects of aluminum nitride monolayers doped by 5d transition metal atoms: possible two-dimensional long-range magnetic orders [J]. Acta Physica Sinica, 2017, 66(6): 063102.
    [11] WANG Y, LV J, ZHU L, et al. Crystal structure prediction via particle swarm optimization [J]. Physics, 2010, 82(9): 7174–7182.
    [12] KRESSE G, JOUBERT D. From ultrasoft pseudopotentials to the projector augmented-wave method [J]. Physical Review B, 1999, 59(3): 1758–1775. doi: 10.1103/PhysRevB.59.1758
    [13] KRESSE G, HAFNERR J. Ab initio molecular-dynamics simulation of the liquid-metal; amorphous-semiconductor transition in germanium [J]. Physical Review B, 1994, 49(20): 14251–14269. doi: 10.1103/PhysRevB.49.14251
    [14] KRESSE G, HAFNERR J. Ab initio molecular dynamics for liquid metals [J]. Physical Review B, 1993, 47(1): 558–561. doi: 10.1103/PhysRevB.47.558
    [15] PHILLIPS J C. Energy-band interpolation scheme based on a pseudopotential [J]. Physical Review, 1958, 112(3): 685–695. doi: 10.1103/PhysRev.112.685
    [16] 陈舜麒.计算材料科学 [M]. 北京: 化学工业出版社, 2005: 100–105.

    CHEN S L. Computational materials science [M]. Beijing: Chemical Industry Press, 2005: 100–105.
    [17] JOHN P P, KIERON B, MATTHIAS E. Generalized gradient approximation made simple [J]. Physical Review Letters, 1996, 77(18): 3865–3868. doi: 10.1103/PhysRevLett.77.3865
    [18] MONKHORST H J, PACNK J D. Special points for Brillouin-zone integrations [J]. Physical Review B, 1976, 16(4): 1746–1747.
    [19] THIRUMALAI D, HALL R W, BERNE B. A path integral Monte Carlo study of Liquid neon and the quantum effective pair potential [J]. The Journal of Chemical Physics, 1984, 81(6): 2523–2527. doi: 10.1063/1.447985
    [20] BORN M, HUANG K, LAX M. Dynamical theory of crystal lattices [J]. American Journal of Physics, 1956, 23(7): 474–483.
    [21] WANG Y C, LV J, MA Y M, et al. Superconductivity of MgB2 under ultrahigh pressure: a first-principles study [J]. Physical Review B, 2009, 80(9): 092505. doi: 10.1103/PhysRevB.80.092505
    [22] XU L F, ZHAO Z S, WANG L M, et al. Prediction of a three-dimensional conductive superhard material: diamond-like BC2 [J]. The Journal of Physical Chemistry C, 2010, 114(51): 22688–22690. doi: 10.1021/jp106926g
    [23] BADER R F. Atoms in molecules [J]. Accounts of Chemical Research, 1985, 18(1): 9–15. doi: 10.1021/ar00109a003
    [24] OGANOV A R, CHEN J, GATTI C, et al. Ionic high-pressure form of elemental boron [J]. Nature, 2009, 460(7252): 863–868.
  • 加载中
图(4) / 表(2)
计量
  • 文章访问数:  8152
  • HTML全文浏览量:  3260
  • PDF下载量:  53
出版历程
  • 收稿日期:  2019-01-21
  • 修回日期:  2019-02-21

目录

    /

    返回文章
    返回