大块高纯Fe3C的高温高压合成

杨俊 杨刚 陈星 赵彬 冷春蔚 刘勋 黄海军

杨俊, 杨刚, 陈星, 赵彬, 冷春蔚, 刘勋, 黄海军. 大块高纯Fe3C的高温高压合成[J]. 高压物理学报, 2019, 33(4): 043302. doi: 10.11858/gywlxb.20190715
引用本文: 杨俊, 杨刚, 陈星, 赵彬, 冷春蔚, 刘勋, 黄海军. 大块高纯Fe3C的高温高压合成[J]. 高压物理学报, 2019, 33(4): 043302. doi: 10.11858/gywlxb.20190715
YANG Jun, YANG Gang, CHEN Xing, ZHAO Bin, LENG Chunwei, LIU Xun, HUANG Haijun. Synthesis of Pure Bulk Fe3C under High Temperature and High Pressure[J]. Chinese Journal of High Pressure Physics, 2019, 33(4): 043302. doi: 10.11858/gywlxb.20190715
Citation: YANG Jun, YANG Gang, CHEN Xing, ZHAO Bin, LENG Chunwei, LIU Xun, HUANG Haijun. Synthesis of Pure Bulk Fe3C under High Temperature and High Pressure[J]. Chinese Journal of High Pressure Physics, 2019, 33(4): 043302. doi: 10.11858/gywlxb.20190715

大块高纯Fe3C的高温高压合成

doi: 10.11858/gywlxb.20190715
基金项目: 国家自然科学基金(41874103)
详细信息
    作者简介:

    杨 俊(1994-),男,硕士研究生,主要从事高压物理研究. E-mail:18207241437@163.com

    通讯作者:

    黄海军(1976-),男,博士,教授,主要从事高压物理与地球物理研究. E-mail:hjhuang@whut.edu.cn

  • 中图分类号: O521.3; P311

Synthesis of Pure Bulk Fe3C under High Temperature and High Pressure

  • 摘要: Fe3C(渗碳体)是一种用途广泛、力学和磁学性能优良的材料,因而其制备方法一直受到人们的关注。通过高温高压下铁和碳的固相反应,成功制备出大块、致密、高纯的Fe3C样品,探索了原料种类、颗粒大小、合成温度、合成压力、保温时间等因素对烧结样品的影响。结果表明:当Fe粉粒径为9 $ {\text{μ}}{\rm{m}}$,石墨粒径为1.3 $ {\text{μ}}{\rm{m}}$,在4 GPa、1000 ℃条件下烧结的Fe3C最为致密。

     

  • 图  Fe3C的晶体结构

    Figure  1.  Crystal structure of cementite

    图  样品组装示意图

    Figure  2.  Schematic of sample assembly

    图  烧结工艺曲线

    Figure  3.  Sintering process curve

    图  烧结样品的XRD谱

    Figure  4.  XRD patterns of sintered samples

    图  样品的背散射电子图和能谱分析图

    Figure  5.  Backscattered electron map and energy spectrum analysis of the sample

    图  碳的${{K_{\text{α}}}}$峰值计数率随碳质量分数的变化(标准样品Fe3C和样品4中C的质量分数分别为(6.67±0.01)%和(6.58±0.01)%)

    Figure  6.  The ${{K_{\text{α}}}}$ peak count rate of carbon varies with carbon mass fraction (The mass fraction of C in the standard sample Fe3C and Sample 4 are (6.67±0.01) % and (6.58±0.01)%, respectively.)

    图  Fe3C的横波声速(a)和纵波声速(b)的超声测量结果

    Figure  7.  (a) Shear wave and (b) compressional wave of Fe3C measured using ultrasonic equipment

    图  烧结样品的SEM图像

    Figure  8.  SEM image of sintered sample

    图  Fe3C的磁滞回线

    Figure  9.  Magnetic hysteresis loop diagram of Fe3C

    表  1  Fe3C原料及烧结参数

    Table  1.   Fe3C raw material and sintering parameters

    No.dFe/$ {\text{μ}}{\rm{m}}$dC/$ {\text{μ}}{\rm{m}}$T/℃t/minp/GPaProductDensity/(g·cm–3)
    114974 (Acticarbon) 800104Fe3C6.869
    21491.3 (Graphite) 800104Fe-C
    391.3 (Graphite) 800104Fe-C
    491.3 (Graphite)1000104Fe3C7.533
    50.031.3 (Graphite)1000104Fe3C6.931
    下载: 导出CSV
  • [1] 蔡红, 卢军, 王志明. 渗碳体的结构和一次渗碳体形态的研究 [J]. 热处理, 2010, 25(2): 50–53. doi: 10.3969/j.issn.1008-1690.2010.02.011

    CAI H, LU J, WANG Z M. Study on the structure of cementite and the morphology of primary cementite [J]. Heat Treatment, 2010, 25(2): 50–53. doi: 10.3969/j.issn.1008-1690.2010.02.011
    [2] 何强. 氧化物添加剂对两步法制备碳化铁的影响[D]. 武汉: 武汉科技大学, 2008: 3–5.

    HE Q. Effect of oxide additives on preparation of iron carbide by two-step process [D]. Wuhan: Wuhan University of Science and Technology, 2008: 3–5.
    [3] DAVID B, SCHNEEWEISS O, PIZÚROVÁ N, et al. Nanopowders with superparamagnetic Fe3C particles and their annealing behaviour [J]. Surface and Interface Analysis, 2010, 42(6/7): 699–702.
    [4] TERADA M, ITOH M, LIU J R, et al. Electromagnetic wave absorption properties of Fe3C/carbon nanocomposites prepared by a CVD method [J]. Journal of Magnetism and Magnetic Materials, 2009, 321(9): 1209–1213. doi: 10.1016/j.jmmm.2008.11.001
    [5] LIPERT K, KAZMIERCZAK J, PEŁECH I, et al. Magnetic properties of cementite (Fe3C) nanoparticle agglomerates in a carbon matrix [J]. Materials Science-Poland, 2007, 25(2): 399–404.
    [6] PRESCHER C, DUBROVINSKY L, BYKOVA E, et al. High Poisson’s ratio of Earth’s inner core explained by carbon alloying [J]. Nature Geoscience, 2015, 8(3): 220–223. doi: 10.1038/ngeo2370
    [7] WEERASINGHE G L, NEEDS R J, PICKARD C J. Computational searches for iron carbide in the Earth’s inner core [J]. Physical Review B, 2011, 84(17): 174110. doi: 10.1103/PhysRevB.84.174110
    [8] DODD S P, SAUNDERS G A, CANKURTARAN M, et al. Ultrasonic study of the temperature and hydrostatic-pressure dependences of the elastic properties of polycrystalline cementite (Fe3C) [J]. Physica Status Solidi (A), 2003, 198(2): 272–281. doi: 10.1002/(ISSN)1521-396X
    [9] DAVID B, ZBORIL R, MASHLAN M, et al. Single ferromagnetic behaviour of nanopowders with Fe3C [J]. Journal of Magnetism and Magnetic Materials, 2006, 304(2): e787–e789. doi: 10.1016/j.jmmm.2006.02.224
    [10] KOMOGORTSEV S V, ISKHAKOV R S, BALAEV A D, et al. Magnetic properties of Fe3C ferromagnetic nanoparticles encapsulated in carbon nanotubes [J]. Physics of the Solid State, 2007, 49(4): 734–738. doi: 10.1134/S1063783407040233
    [11] YANG K Y, XU W, ZHANG Y, et al. Synthesis and characteristics of Fe3C nanoparticles embedded in amorphous carbon matrix [J]. Chemical Research in Chinese Universities, 2010, 26(3): 348–351.
    [12] GAO L. Density, magnetic properties and sound velocities of iron-rich materials at high temperature and high pressure [D]. University of Illinois at Urbana-Champaign, 2011.
    [13] STEWART A J. Planetary cores: effect and behaviour of minor elements on the Fe-S system to 40 GPa [D]. Switzerland: ETH Zurich, 2006: 1–4.
    [14] DASGUPTA R, WALKER D. Carbon solubility in core melts in a shallow magma ocean environment and distribution of carbon between the Earth’s core and the mantle [J]. Geochimica et Cosmochimica Acta, 2008, 72(18): 4627–4641. doi: 10.1016/j.gca.2008.06.023
  • 加载中
图(9) / 表(1)
计量
  • 文章访问数:  5428
  • HTML全文浏览量:  3332
  • PDF下载量:  50
出版历程
  • 收稿日期:  2019-01-18
  • 修回日期:  2019-03-26

目录

    /

    返回文章
    返回