压剪载荷作用下TB6钛合金的动态力学性能

邹学韬 张晓晴 姚小虎

邹学韬, 张晓晴, 姚小虎. 压剪载荷作用下TB6钛合金的动态力学性能[J]. 高压物理学报, 2019, 33(2): 024206. doi: 10.11858/gywlxb.20190713
引用本文: 邹学韬, 张晓晴, 姚小虎. 压剪载荷作用下TB6钛合金的动态力学性能[J]. 高压物理学报, 2019, 33(2): 024206. doi: 10.11858/gywlxb.20190713
ZOU Xuetao, ZHANG Xiaoqing, YAO Xiaohu. Dynamic Behavior of TB6 Titanium Alloy under Shear-Compression Loading[J]. Chinese Journal of High Pressure Physics, 2019, 33(2): 024206. doi: 10.11858/gywlxb.20190713
Citation: ZOU Xuetao, ZHANG Xiaoqing, YAO Xiaohu. Dynamic Behavior of TB6 Titanium Alloy under Shear-Compression Loading[J]. Chinese Journal of High Pressure Physics, 2019, 33(2): 024206. doi: 10.11858/gywlxb.20190713

压剪载荷作用下TB6钛合金的动态力学性能

doi: 10.11858/gywlxb.20190713
基金项目: 国家自然科学基金(11672110, 11472110)
详细信息
    作者简介:

    邹学韬(1993-),男,硕士研究生,主要从事冲击动力学研究. E-mail: zouxt-scut@outlook.com

    通讯作者:

    姚小虎(1974-),男,博士,教授,主要从事爆炸与冲击动力学研究. E-mail: yaoxh@scut.edu.cn

  • 中图分类号: O347.3

Dynamic Behavior of TB6 Titanium Alloy under Shear-Compression Loading

  • 摘要: 钛合金以其轻质高强的优异力学性能被广泛应用于航空航天领域。使用Instron万能材料试验机和分离式霍普金森压杆,对TB6钛合金进行准静态和动态力学性能实验,得到了压缩、拉伸和压剪载荷作用下TB6钛合金的准静态和动态应力-应变曲线,构建了单轴压缩和纯剪切两种应力状态下的Johnson-Cook动态本构模型。结果表明,TB6钛合金的屈服应力表现出明显的拉压不对称性、应变率强化和热软化效应。使用拉压不对称因子,修正了von Mises屈服准则,修正的屈服准则可很好地预测TB6钛合金的准静态和动态屈服行为。

     

  • 图  压剪试件和帽型试件的应力状态

    Figure  1.  Stress of shear-compression and cap-type specimens

    图  试件应变云图

    Figure  2.  Nephograms of strain distribution in specimens

    图  准静态正应力-应变曲线

    Figure  3.  Quasi-static normal stress-strain curve

    图  准静态切应力-应变曲线

    Figure  4.  Quasi-static shear stress-strain curve

    图  SHPB实验典型波形

    Figure  5.  Typical waves of SHPB experiments

    图  SHPB动态压缩应力-应变曲线

    Figure  6.  Stress-strain curves of TB6 titanium alloy under SHPB dynamic compression

    图  绝热温升曲线

    Figure  7.  Time history of temperature rise during adiabatic process

    图  不同应变率下J-C模型预测与实验结果的比较

    Figure  8.  Stress-strain cures at different strain rates from experiments and J-C model fitting

    图  不同应变率下的初始屈服面

    Figure  9.  Initial yield surface at different strain rates

    图  10  应变率3500 s-1下的后继屈服面

    Figure  10.  Succeeding yield surface at strain rate of 3500 s-1

    表  1  J-C模型参数拟合结果

    Table  1.   Fitting results of J-C model parameters

    ConditionA/MPaB/MPanm
    Uniaxial compression939326.60.240.661 18
    Pure shear495 92.50.210.655 48
    下载: 导出CSV
  • [1] 欧阳德来. TB6和TA15钛合金β锻组织演变及动态再结晶行为研究 [D]. 南京: 南京航空航天大学, 2011: 1-2
    [2] 吴琳, 王克鲁, 鲁世强. 基于逐步回归法的TB6钛合金本构关系研究 [J]. 热加工工艺, 2010, 39(8): 29–35 doi: 10.3969/j.issn.1001-3814.2010.08.010

    WU L, WANG K L, LU S Q. Study on constitutive relationship of TB6 alloy based on stepwise regression method [J]. Hot Working Technology, 2010, 39(8): 29–35 doi: 10.3969/j.issn.1001-3814.2010.08.010
    [3] 雷力明, 黄旭, 黄利军. 铸态TB6钛合金热变形行为及本构关系 [J]. 中国有色金属学报, 2010, 20(Suppl 1): 377–380

    LEI L M, HUANG X, HUANG L J. Hot deformation behavior and constitutive relationship of as-cast TB6 alloy [J]. The Chinese Journal of Nonferrous Metals, 2010, 20(Suppl 1): 377–380
    [4] 段园培, 黄仲佳, 余小鲁. 基于摩擦修正的TB6合金流变应力行为研究及本构模型建立 [J]. 稀有金属, 2014, 38(2): 202–209

    DUAN Y P, HUANG Z J, YU X L. Flow stress behavior and constitutive model of as-cast TB6 titanium alloy based on friction correction [J]. Chinese Journal of Rare Metals, 2014, 38(2): 202–209
    [5] WU Y, LIU J, WANG H, et al. Effect of stress ratio on very high cycle fatigue properties of Ti-10V-2Fe-3Al alloy with duplex microstructure [J]. Journal of Materials Science & Technology, 2018, 34(7): 1189–1195.
    [6] LI J, LI F G, MA X K, et al. Micromechanical study of the forged Ti-1023 titanium alloy by micro-indentation [C]//Key Engineering Materials. Trans Tech Publications, 2018, 765: 160-165.
    [7] RITTEL D, LEE S, RAVICHANDRAN G. A shear-compression specimen for large strain testing [J]. Experimental Mechanics, 2002, 42(1): 58–64. doi: 10.1007/BF02411052
    [8] 周刚毅, 董新龙, 付应乾. 不同加载状态下TA2钛合金绝热剪切破坏响应特性 [J]. 力学学报, 2016, 48(6): 1353–1361

    ZHOU G Y, DONG X L, FU Y Q. An experimental study on adiabatic shear behavior of TA2 titanium alloy subject to different loading condition [J]. Chinese Journal of Theoretical & Applied Mechanics, 2016, 48(6): 1353–1361
    [9] JIN T, ZHOU Z, SHU X, et al. Effects of strain rate on PMMA failure behavior [J]. Applied Physics A, 2016, 122(1): 7. doi: 10.1007/s00339-015-9526-0
    [10] 宋立, 胡时胜. SHPB数据处理中的二波法与三波法 [J]. 爆炸与冲击, 2005, 25(4): 368–373 doi: 10.3321/j.issn:1001-1455.2005.04.014

    SONG L, HU S S. Two-wave and three-wave method in SHPB data processing [J]. Explosion and Shock Waves, 2005, 25(4): 368–373 doi: 10.3321/j.issn:1001-1455.2005.04.014
    [11] JOHNSON G R, COOK W H. A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures [C]//Proceedings of the 7th International Symposium on Ballistic, 1983: 541-547.
    [12] 徐天平, 王礼立, 卢维娴. 高应变率下钛合金Ti-6AI-4V的热-粘塑性特性和绝热剪切变形 [J]. 爆炸与冲击, 1987, 7(1): 1–8

    XU T P, WANG L L, LU W X. The thermo-visco plasticity and adiabatic shear deformation for a titanium alloy Ti-6Al-4V under high strain rates [J]. Explosion and Shock Waves, 1987, 7(1): 1–8
    [13] CAZACU O, PLUNKETT B, BARLAT F. Orthotropic yield criterion for hexagonal closed packed metals [J]. International Journal of Plasticity, 2006, 22(7): 1171–1194. doi: 10.1016/j.ijplas.2005.06.001
    [14] KHAN A S, YU S, LIU H. Deformation induced anisotropic responses of Ti-6Al-4V alloy Part II: a strain rate and temperature dependent anisotropic yield criterion [J]. International Journal of Plasticity, 2012, 38(4): 14–26.
  • 加载中
图(10) / 表(1)
计量
  • 文章访问数:  10222
  • HTML全文浏览量:  4077
  • PDF下载量:  42
出版历程
  • 收稿日期:  2019-01-17
  • 修回日期:  2019-01-28

目录

    /

    返回文章
    返回