铝粒径及成型压强对Al/PTFE冲击反应的影响

刘元斌 任会兰 李尉 宁建国

刘元斌, 任会兰, 李尉, 宁建国. 铝粒径及成型压强对Al/PTFE冲击反应的影响[J]. 高压物理学报, 2019, 33(5): 054203. doi: 10.11858/gywlxb.20190712
引用本文: 刘元斌, 任会兰, 李尉, 宁建国. 铝粒径及成型压强对Al/PTFE冲击反应的影响[J]. 高压物理学报, 2019, 33(5): 054203. doi: 10.11858/gywlxb.20190712
LIU Yuanbin, REN Huilan, LI Wei, NING Jianguo. Influence of Particle Size of Aluminum Powder and Molding Pressure on Impact-Initiation of Al/PTFE[J]. Chinese Journal of High Pressure Physics, 2019, 33(5): 054203. doi: 10.11858/gywlxb.20190712
Citation: LIU Yuanbin, REN Huilan, LI Wei, NING Jianguo. Influence of Particle Size of Aluminum Powder and Molding Pressure on Impact-Initiation of Al/PTFE[J]. Chinese Journal of High Pressure Physics, 2019, 33(5): 054203. doi: 10.11858/gywlxb.20190712

铝粒径及成型压强对Al/PTFE冲击反应的影响

doi: 10.11858/gywlxb.20190712
基金项目: 国家自然科学基金(11872124)
详细信息
    作者简介:

    刘元斌(1992-),男,硕士,主要从事材料与结构冲击动力学研究. E-mail: liuyuanbin_bit@163.com

    通讯作者:

    任会兰(1973-),女,博士,教授,主要从事材料与结构冲击动力学研究. E-mail: huilanren@bit.edu.cn

  • 中图分类号: O383

Influence of Particle Size of Aluminum Powder and Molding Pressure on Impact-Initiation of Al/PTFE

  • 摘要: 采用模压烧结法制备了不同成型压强下铝粉粒径分别为10、30和200 ${\text{μ}}{\rm{m}}$的Al/PTFE试件,基于分离式霍普金森压杆(SHPB)试验装置进行冲击引发试验,试验过程中通过高速摄影装置记录活性材料的反应情况。试验结果表明:随着成型压强增大,试件的冲击反应速度阈值均呈现先增大后减小的趋势。铝粉粒径为10和30 ${\text{μ}}{\rm{m}}$时,较高成型压强的试件能够于点火延迟时间1000~1100 ${\text{μ}}{\rm{s}}$处发生反应,使试件冲击反应速度阈值骤降;铝粉粒径为200 ${\text{μ}}{\rm{m}}$时,活性材料点火延迟时间均在600 ${\text{μ}}{\rm{s}}$附近。在相同成型压强下,试件的冲击反应速度阈值随铝粉粒径增大而升高。活性材料的冲击点火反应与材料的微观缺陷、应力波在SHPB装置中的传播、应力脉冲幅值以及材料的破坏过程等因素相关。

     

  • 图  试件制备流程

    Figure  1.  Flow chart of the specimens preparation

    图  分离式霍普金森压杆中应力波传播曲线

    Figure  2.  The propagation of stress waves in the SHPB

    图  试件冲击引发反应过程

    Figure  3.  Impact-ignition of the reactive material

    图  不同成型压强试件反应阈值及点火延迟时间

    Figure  4.  Thresholds and delay time of impact-ignition of Al/PTFE with different molding pressures

    图  不同成型压强的Al/PTFE试件冲击反应速度阈值

    Figure  5.  Thresholds of impact-ignition of Al/PTFE with different molding pressure

    图  不同成型压强制备的Al/PTFE试件的SEM图像

    Figure  6.  SEM images of Al/PTFE reactive materials prepared under different molding pressures

    图  不同颗粒尺寸条件下Al/PTFE试件的真实应力-时间曲线

    Figure  7.  True stress-time curves of Al/PTFE with different particle sizes

    图  不同铝粉粒径的Al/PTFE试件的冲击反应速度阈值

    Figure  8.  Thresholds of impact-ignition of Al/PTFE with different particle sizes of Al

    表  1  不同成型压强下Al/PTFE试件的孔隙率

    Table  1.   Porosities of Al/PTFE reactive materials prepared under different molding pressures

    Molding pressure/MPa Porosities of Al/PTFE/%
    10 ${\text{μ}}{\rm{m}}$ Al particle 30 ${\text{μ}}{\rm{m}}$ Al particle 200 ${\text{μ}}{\rm{m}}$ Al particle
    30 4.9 4.8 3.8
    50 4.0 3.6 3.2
    80 3.1 2.9 2.5
    100 2.5 2.4 1.4
    120 2.3 1.9 1.2
    下载: 导出CSV
  • [1] MICHAEL T R, DANIEL W D, JAMES R H, et al. Reactive material enhanced projectiles and related methods: 20060011086 [P]. 2006.
    [2] MOCK W, HOLT W H. Impact initiation of rods of pressed polytetrafluoroethylene (PTFE) and aluminum powders [C]// American Institute of Physics, 2006: 1097–1100.
    [3] WANG H F, ZHENG Y F, YU Q B, et al. Impact-induced initiation and energy release behavior of reactive materials [J]. Journal of Applied Physics, 2011, 110(7): 239–H03.
    [4] 黄亨建, 黄辉, 阳世清, 等. 毁伤增强型破片探索研究 [J]. 含能材料, 2007, 15(6): 566–569. doi: 10.3969/j.issn.1006-9941.2007.06.002

    HUANG H J, HUANG H, YANG S Q, et al. Preliminary research on damage enhanced fragment [J]. Chinese Journal of Energetic Materials, 2007, 15(6): 566–569. doi: 10.3969/j.issn.1006-9941.2007.06.002
    [5] JOSHI V S. Process for making polytetrafluoroethylene-aluminum composite and product made: 654799381 [P]. 2003.
    [6] 阳世清, 徐松林, 张彤. Al/PTFE反应材料制备工艺及性能 [J]. 国防科技大学学报, 2008, 30(6): 40–42.

    YANG S Q, XU S L, ZHANG T. Preparation and performance of Al/PTEF reactive materials [J]. Journal of National University of Defense Technology, 2008, 30(6): 40–42.
    [7] 赵鹏铎, 卢芳云, 徐松林, 等. 活性材料PTFE/Al动态压缩性能 [J]. 含能材料, 2009(4): 459–462. doi: 10.3969/j.issn.1006-9941.2009.04.020

    ZHAO P D, LU F Y, XU S L, et al. The dynamic compressive properties of PTFE/Al reactive materials [J]. Chinese Journal of Energetic Materials, 2009(4): 459–462. doi: 10.3969/j.issn.1006-9941.2009.04.020
    [8] 徐松林, 阳世清, 赵鹏铎, 等. PTFE/Al含能复合材料的压缩力学行为研究 [J]. 力学学报, 2009, 41(5): 708–712. doi: 10.3321/j.issn:0459-1879.2009.05.013

    XU S L, YANG S Q, ZHAO P D, et al. The study on the compressive behavior of PTFE/Al energetic composite [J]. Chinese Journal of Theoretical and Applied Mechanics, 2009, 41(5): 708–712. doi: 10.3321/j.issn:0459-1879.2009.05.013
    [9] HERBOLD E B, CAI J, BENSON D J, et al. Simulation of particle size effect on dynamic properties and fracture of PTFE-W-Al composites [C]// American Institute of Physics, 2007: 785–788.
    [10] GE C, DONG Y, MAIMAITITUERSUN W. Microscale simulation on mechanical properties of Al/PTFE composite based on real microstructures [J]. Materials, 2016, 9(7): 590.
    [11] 乌布力艾散·麦麦提图尔荪, 葛超, 董永香, 等. 基于Al/PTFE真实细观特性统计模型的宏观力学性能模拟 [J]. 复合材料学报, 2016(11): 2528–2536.

    MAIMAITITUERSUN W, GE C, DONG Y X, et al. Simulation on mechanical properties of Al/PTFE based on mesoscopic statistical model [J]. Acta Materiae Compositae Sinica, 2016(11): 2528–2536.
    [12] OSBORNE D T, PANTOYA M L. Effect of Al particle size on the thermal degradation of Al/Teflon mixtures [J]. Combustion Science & Technology, 2007, 179(8): 1467–1480.
    [13] 吴家祥, 李裕春, 方向, 等. Al粒径对Al-PTFE准静压反应和落锤撞击感度的影响 [J]. 含能材料, 2018(6): 524–529. doi: 10.11943/j.issn.1006-9941.2018.06.010

    WU J X, LI Y C, FANG X, et al. Effect of Al particle size on the quasi-static compression reaction and drop hammer impact sensitivity of Al-PTFE [J]. Chinese Journal of Energetic Materials, 2018(6): 524–529. doi: 10.11943/j.issn.1006-9941.2018.06.010
    [14] 王海福, 刘宗伟, 俞为民, 等. 活性破片能量输出特性试验研究 [J]. 北京理工大学学报, 2009, 29(8): 663–666.

    WANG H F, LIU Z W, YU W M, et al. Experimental investigation of energy release characteristics of reactive fragments [J]. Transactions of Beijing Institute of Technology, 2009, 29(8): 663–666.
    [15] MOCK W, DROTAR J T. Effect of Aluminum particle size on the impact initiation of pressed PTFE/AL composite rods [C]// Shock Compression of Condensed Matter: Conference of the American Physical Society Topical Group on Shock Compression of Condensed Matter. American Institute of Physics, 2007: 971-974.
    [16] GE C, MAIMAITITUERSUN W, REN Y M, et al. Impact initiation threshold study of PTFE/Al composite [J]. China Sciencepaper, 2016.
    [17] 钟凯, 刘建, 王林元, 等. 含能材料中" 热点”的理论模拟研究进展 [J]. 含能材料, 2018, 26(1): 11–20. doi: 10.11943/j.issn.1006-9941.2018.01.002

    ZHONG K, LIU J, WANG L Y, et al. Issue of " hot-spot” in energetic materials:recent progresses of modeling and calculations [J]. Chinese Journal of Energetic Materials, 2018, 26(1): 11–20. doi: 10.11943/j.issn.1006-9941.2018.01.002
    [18] 彭亚晶, 叶玉清. 含能材料起爆过程" 热点”理论研究进展 [J]. 化学通报, 2015, 78(8): 693–701.

    PENG Y J, YE Y Q. Research progress of " Hot spot” theory in energetic materials initiation [J]. Chemistry, 2015, 78(8): 693–701.
    [19] WU J X, FANG X, GAO Z R, et al. Investigation on mechanical properties and reaction characteristics of Al-PTFE composites with different Al particle size [J]. Advances in Materials Science and Engineering, 2018, 2018: 1–10.
    [20] HERBOLD E B, NESTERENKO V F, BENSON D J, et al. Particle size effect on strength, failure, and shock behavior in polytetrafluoroethylene-Al-W granular composite materials [J]. Journal of Applied Physics, 2008, 104(10): 103903. doi: 10.1063/1.3000631
  • 加载中
图(8) / 表(1)
计量
  • 文章访问数:  9159
  • HTML全文浏览量:  3497
  • PDF下载量:  46
出版历程
  • 收稿日期:  2019-01-17
  • 修回日期:  2019-02-26

目录

    /

    返回文章
    返回