Effects of {100} Seed Crystal Surface with Different Shape on the HPHT Synthetic Large Single Crystal Diamonds
-
摘要: 选用不同形状的{100}金刚石籽晶面,以NiMnCo合金为触媒,利用温度梯度法在压力为5.5 GPa、温度为1260~1300 ℃的条件下,合成Ib型金刚石大单晶。通过光学显微镜和电子显微镜对晶体的形貌进行表征。研究发现,将合成籽晶的{100}晶面切割成不同形状,只会令晶体的长宽比发生改变,晶体并不会因籽晶形状的改变而偏离{100}晶体的正常形貌。晶体的合成质量受到籽晶长宽比的影响:在籽晶长宽比较小的情况下,晶体的合成质量能够得到保证;但当籽晶长宽比过大时,合成晶体的下表面出现较多缺陷。关于籽晶形状对晶体生长情况影响的研究,揭示了籽晶形状与合成晶体形貌之间的关系,有利于更深入理解晶体的生长过程和外延生长机理,对于今后合成不同形貌的金刚石具有借鉴意义。同时此项研究有助于扩大籽晶的选取范围,降低籽晶的选择难度,提升工业级金刚石的利用率,为合成金刚石大单晶的籽晶选取提供了技术支持。Abstract: A series of high-quality Ib diamonds was successfully synthesized by {100} seed crystals with different shapes in NiMnCo-C system, using the temperature gradient method at pressure of 5.5 GPa and temperature of 1260–1300 ℃. The morphology of the crystal was characterized by optical microscopy and electron microscopy. It is found that cutting the {100} surface of synthetic seed crystal into different shapes will only change the aspect ratio of the crystal, and the crystal will not deviate from the normal morphology of {100} crystal due to the change of the shape of seed crystal. The quality of crystal synthesis is affected by the aspect ratio of the seed. When the ratio of length to width of seed crystal is small, the quality of crystal synthesis can be guaranteed and high quality crystal can be synthesized. However, there are many defects in the lower surface of synthetic crystal when the ratio of seed length to width is too large. This study reveals the relationship between seed shape and synthetic crystal morphology, which is conducive to a deeper understanding of crystal growth process and epitaxial growth mechanism. This study will be useful for future synthesis of diamond with different morphologies. At the same time, this research will help to expand the scope of seed crystal selection, reduce the difficulty of seed crystal selection, improve the utilization rate of industrial grade diamond, and provide technical support for the seed crystal selection of synthetic large single crystal diamond.
-
表 1 不同形貌籽晶合成晶体的实验结果
Table 1. Synthesis experimental results of seed crystal with different morphologies
Sample No. Seed shape Seed size/mm Synthesis time/h Crystal size/mm a Uncut 0.8/0.8 18 3.5/3.3 b Square 1.1/1.1 8 2.9/2.9 c Circle 1.0/1.0 7 2.3/2.1 d ET 1.1/0.9 12 3.1/3.0 e RT 2.2/1.4 11 3.5/2.9 f Rectangle 1.3/0.9 11 2.5/2.2 g Droplet 1.6/0.8 12 4.0/3.0 h LARR 2.6/0.8 11 4.9/3.6 -
[1] 严世胜, 彭鸿雁, 赵志斌, 等. 掺氮金刚石电极性能及其氧化降解硝基苯研究 [J]. 无机材料学报, 2018, 33(5): 565–569.YAN S S, PENG H Y, ZHAO Z B, et al. Nitrogen-doped diamond electrode property and anodic catalytic degradation of nitrobenzene [J]. Journal of Inorganic Materials, 2018, 33(5): 565–569. [2] 董亮, 王艳辉, 臧建兵. 金刚石基燃料电池催化剂的研究进展 [J]. 无机材料学报, 2017, 32(7): 673–680.DONG L, WANG Y H, ZANG J B. Recent progress in diamond-based electrocatalysts for fuel cells [J]. Journal of Inorganic Materials, 2017, 32(7): 673–680. [3] SOMMER A P, ZHU D, WIORA M, et al. The top of the biomimetic triangle [J]. Journal of Bionic Engineering, 2008, 5(2): 91–94. doi: 10.1016/S1672-6529(08)60011-6 [4] JAEGER M D, HYUN S, DAY A R, et al. Resistivity of boron-doped diamond microcrystals [J]. Applied Physics Letters, 1998, 72(19): 2445–2447. doi: 10.1063/1.121680 [5] BURNS R C, DAVIS G. Growth of synthetic diamond [M]//FIELD J E. The Properties of Natural and Synthetic Diamond. London: Academic Press, 1992: 396–422. [6] BURNS R C. The manufacture and application of de beers large crystal synthetic diamond [M]//SAITO S, FUKUNAGA O, YOSHIKAWA M. Science and Technology of New Diamond. Tokyo: KTK Scientific Publishers, 1990. [7] SOMMER A P, ZHU D, BRHNE K. Surface conductivity on hydrogen-terminated nanocrystalline diamond: implication of ordered water layers [J]. Crystal Growth and Design, 2007, 7(11): 2298–2301. doi: 10.1021/cg070610b [8] LIU X B, JIA X P, GUO X K, et al. Experimental evidence for nucleation and growth mechanism of diamond by seed-assisted method at high pressure and high temperature [J]. Crystal Growth & Design, 2010, 10(7): 2895–2900. [9] 臧传义, 马红安, 田宇, 等. 利用不同籽晶面生长优质宝石级金刚石单晶 [J]. 吉林大学学报(工学版), 2006, 36(1): 10–13.ZANG C Y, MA H A, TIAN Y, et al. Growth of high-quality gem diamonds with different seed facets [J]. Journal of Jilin University (Engineering and Technology Edition), 2006, 36(1): 10–13. [10] 臧传义, 马红安, 肖宏宇, 等. 用不同粒度的籽晶生长优质宝石级金刚石单晶 [J]. 人工晶体学报, 2006, 35(2): 355–358. doi: 10.3969/j.issn.1000-985X.2006.02.034ZANG C Y, MA H A, XIAO H Y, et al. Growth of large high-quality single crystal diamond with seeds of different grain sizes [J]. Journal of Synthetic Crystals, 2006, 35(2): 355–358. doi: 10.3969/j.issn.1000-985X.2006.02.034 [11] 刘晓晨, 郭辉, 安晓明, 等. CVD法制备高质量金刚石单晶研究进展 [J]. 人工晶体学报, 2017, 46(10): 1897–1901. doi: 10.3969/j.issn.1000-985X.2017.10.004LIU X C, GUO H, AN X M, et al. Progress of high quality diamond single crystal prepared by CVD method [J]. Journal of Synthetic Crystals, 2017, 46(10): 1897–1901. doi: 10.3969/j.issn.1000-985X.2017.10.004 [12] HIRMKE J, SCHWARZ S, ROTTMAIR C, et al. Diamond single crystal growth in hot filament CVD [J]. Diamond and Related Materials, 2006, 15(4): 536–541. [13] HU M H, BI N, LI S S, et al. Studies on synthesis and growth mechanism of high quality sheet cubic diamond crystals under high pressure and high temperature conditions [J]. International Journal of Refractory Metals and Hard Materials, 2015, 48: 61–64. doi: 10.1016/j.ijrmhm.2014.07.034 [14] LI Z C, JIA X P, HUANG G F, et al. FEM simulations and experimental studies of the temperature field in a large diamond crystal growth cell [J]. Chinese Physics B, 2013, 22(1): 014701. doi: 10.1088/1674-1056/22/1/014701 [15] 李尚升. 优质Ⅱa型宝石级金刚石的高温高压合成及机理研究[D]. 长春: 吉林大学, 2009.LI S S. Growth of large high-quality type Ⅱa diamond crystals and research of the mechanism under HPHT [D]. Changchun: Jilin University, 2009. [16] 臧传义. 优质Ⅰb型宝石级金刚石单晶的合成及机理研究[D]. 长春: 吉林大学, 2006.ZANG C Y. Growth of large high-quality type Ⅰb diamond crystals and research of the mechanism [D]. Changchun: Jilin University, 2006. [17] HAN Q G, MA H A, HUANG G F, et al. Hybrid-anvil: a suitable anvil for large volume cubic high pressure apparatus [J]. Review of Scientific Instruments, 2009, 80(9): 096107. doi: 10.1063/1.3227239 [18] HAN Q G, LIU B, HU M, et al. Design an effective solution for commercial production and scientific research on gem-quality, large, single-crystal diamond by high pressure and high temperature [J]. Crystal Growth & Design, 2011, 11(4): 1000–1005. [19] HU M H, LI S S, MA H A, et al. Effects of a carbon convection field on large diamond growth under high-pressure high-temperature conditions [J]. Chinese Physics B, 2012, 21(9): 098101. doi: 10.1088/1674-1056/21/9/098101 [20] LI Y, JIA X P, HU M H, et al. Growth and annealing study of hydrogen-doped single diamond crystals under high pressure and high temperature [J]. Chinese Physics B, 2012, 21(5): 058101. doi: 10.1088/1674-1056/21/5/058101 [21] LIN I C, LIN C J, TUAN W H. Growth of diamond crystals in Fe-Ni metallic catalysis [J]. Diamond and Related Materials, 2011, 20(1): 42–47. doi: 10.1016/j.diamond.2010.11.009 [22] LI S S, MA H A, LI X L, et al. Synthesis and characterization of p-type boron-doped Ⅱb diamond large single crystals [J]. Chinese Physics B, 2011, 20(2): 028103. doi: 10.1088/1674-1056/20/2/028103 [23] LI Y D, JIA X P, YAN B M, et al. Effects of catalyst height on diamond crystal morphology under high pressure and high temperature [J]. Chinese Physics B, 2016, 25(4): 048103. doi: 10.1088/1674-1056/25/4/048103 [24] LI Y D, JIA X P, CHEN N, et al. Method to eliminate the surface growth defects of large single crystal diamonds: an effective solution to improve the utilization rate for commercial production [J]. CrystEngComm, 2016, 18(36): 6889–6894. doi: 10.1039/C6CE01437B