金属性硅同素异形体的第一性原理研究

孙磊 罗坤 刘兵 韩俏怡 王小雨 梁子太 赵智胜

孙磊, 罗坤, 刘兵, 韩俏怡, 王小雨, 梁子太, 赵智胜. 金属性硅同素异形体的第一性原理研究[J]. 高压物理学报, 2019, 33(2): 020103. doi: 10.11858/gywlxb.20190705
引用本文: 孙磊, 罗坤, 刘兵, 韩俏怡, 王小雨, 梁子太, 赵智胜. 金属性硅同素异形体的第一性原理研究[J]. 高压物理学报, 2019, 33(2): 020103. doi: 10.11858/gywlxb.20190705
SUN Lei, LUO Kun, LIU Bing, HAN Qiaoyi, WANG Xiaoyu, LIANG Zitai, ZHAO Zhisheng. First-Principles Investigations on Metallic Silicon Allotropes[J]. Chinese Journal of High Pressure Physics, 2019, 33(2): 020103. doi: 10.11858/gywlxb.20190705
Citation: SUN Lei, LUO Kun, LIU Bing, HAN Qiaoyi, WANG Xiaoyu, LIANG Zitai, ZHAO Zhisheng. First-Principles Investigations on Metallic Silicon Allotropes[J]. Chinese Journal of High Pressure Physics, 2019, 33(2): 020103. doi: 10.11858/gywlxb.20190705

金属性硅同素异形体的第一性原理研究

doi: 10.11858/gywlxb.20190705
基金项目: 中国博士后科学基金(2017M620097)
详细信息
    作者简介:

    孙 磊(1994-),男,硕士研究生,主要从事高压下材料的理论设计与实验研究.E-mail: ysu_sunlei@163.com

    通讯作者:

    罗 坤(1988-),男,博士,讲师,主要从事新型亚稳材料的设计与合成研究.E-mail: hiluokun@gmail.com

  • 中图分类号: O521.2; O522.2

First-Principles Investigations on Metallic Silicon Allotropes

  • 摘要: 从理论上提出了一种新型金属性硅的同素异形体hP12-Si。 hP12-Si结构可以看作是由六元环形成的一种隧道型结构,与之前报道的Si24结构近似。弹性常数和声子谱的计算结果验证了该结构在常压下的稳定性。通过结构遗传性和热力学稳定性分析表明,可以效仿Si24的制备方法,通过预先合成出高压前驱物LiSi12再除去其中的Li原子来获得hP12-Si。在这种结构中, 有一半的硅原子为5配位,其他硅原子为4配位。电子结构计算表明,该结构具有金属导电性,导电性主要是由于5配位原子的存在导致价电子具有离域性。

     

  • 图  hP12-Si结构模型

    Figure  1.  Structural models of hP12-Si

    图  常压下hP12-Si的声子谱

    Figure  2.  Phonon dispersion curve of hP12-Si at ambient pressure

    图  硅同素异形体相对于Si-I相的焓压曲线

    Figure  3.  Enthalpies of various Si allotropes relative to Si-I as a function of pressure

    图  Si24结构模型

    Figure  4.  Structural models of Si24

    图  Li2Si24和Li4Si24原料的焓压曲线

    Figure  5.  Enthalpies of Li2Si24 and Li4Si24 phase relative to reactants (Li and Si-I) as a function of pressure

    图  Li2Si24脱Li过程

    Figure  6.  Schematic of the compositional change from Li2Si24 (left) to hP12-Si (right)

    图  常压下hP12-Si的电子能带结构

    Figure  7.  Band structure of hP12-Si at ambient pressure

    图  hP12-Si结构的电子态密度

    Figure  8.  Electron density of hP12-Si structure

    表  1  常压下hP12-Si单胞的晶体结构数据

    Table  1.   Crystallographic data for hP12-Si conventional cell

    Space group a c ρ/(g·cm–3) Atomic positions
    P6/m (175) 8.202 3.823 2.512 Si:6k (0.499 33, 0.846 42, 0.5)
    Si:6j (0.679 02, 0.892 27, 0.0)
    下载: 导出CSV

    表  2  hP12-Si单胞中化学键的布居数和键长

    Table  2.   Populations and length of silicon bond in hP12-Si conventional cell

    Silicon bondPopulationsLength of silicon bond/Å
    Si-7—Si-11, Si-7—Si-12, Si-8—Si-10 0.76 2.321
    Si-8—Si-12, Si-9—Si-10, Si-9—Si-11
    Si-1—Si-7, Si-2—Si-8, Si-3—Si-9 0.77 2.327
    Si-4—Si-10, Si-5—Si-11, Si-6—Si-12
    Si-1—Si-2, Si-1—Si-3, Si-2—Si-3 0.33 2.462
    Si-4—Si-5, Si-4—Si-6, Si-5—Si-6
    Si-1—Si-4, Si-2—Si-5, Si-3—Si-6 0.41 2.514
    下载: 导出CSV

    表  3  常压下hP12-Si、Si24和Si-I结构的密度、弹性常数、体弹性模量和剪切模量

    Table  3.   Calculated density, elastic constants , bulk moduli, and shear moduli of hP12-Si, Si24 and Si-I at ambient pressure

    Structure ρ/(g·cm–3) Elastic constants/GPa B/GPa G/GPa
    C11 C22 C33 C44 C55 C66 C12 C13 C23
    hP12-Si 2.512 166 166 148 51 51 56 66 66 94 94 51
    Si24 2.236 164 204 147 37 42 51 40 46 85 85 50
    Si-I 2.402 161 161 161 76 76 76 62 62 95 95 64
    下载: 导出CSV

    表  4  常压下hP12-Si结构的原子位置、配位数和布居数

    Table  4.   Wyckoff positions, coordination numbers, and populations of silicon atoms in hP12-Si

    Atomic number Wyckoff positions Coordination numbers Populations
    Si-1–Si-6 6k (0.499 33, 0.846 42, 0.5) 5 –0.02
    Si-7–Si-12 6j (0.679 02, 0.892 27, 0.0) 4 0.02
    下载: 导出CSV
  • [1] KILBY J S. Miniaturized electronic circuits [J]. Google Patents, 1964.
    [2] NOYCE R N. Semiconductor device-and-lead structure: US 2981877 [P]. 1961–04–25.
    [3] CARLSON D E, WRONSKI C R. Amorphous silicon solar cell [J]. Applied Physics Letters, 1976, 28(11): 671–673. doi: 10.1063/1.88617
    [4] GREEN M A. Solar cells: operating principles, technology, and system applications [J]. Prentice-Hall, 1982.
    [5] GREEN M A, EMERY K, HISHIKAWA Y, et al. Solar cell efficiency tables (Version 45) [J]. Progress in Photovoltaics: Research and Applications, 2015, 23(1): 1–9. doi: 10.1002/pip.v23.1
    [6] MUJICA A, RUBIO A, MUNOZ A, et al. High-pressure phases of group-IV, III-V, and H-VI compounds [J]. Reviews of Modern Physics, 2003, 75(3): 863–912. doi: 10.1103/RevModPhys.75.863
    [7] BAUTISTA-HERNANDEZ A, RANGEL T, ROMERO A H, et al. Structural and vibrational stability of M and Z phases of silicon and germanium from first principles [J]. Journal of Applied Physics, 2013, 113(19): 193504. doi: 10.1063/1.4804668
    [8] FUJIMOTO Y, KORETSUNE T, SAITO S, et al. A new crystalline phase of four-fold coordinated silicon and germanium [J]. New Journal of Physics, 2008, 10(8): 083001.
    [9] WU F, JUN D, KAN E, et al. Density functional predictions of new silicon allotropes: electronic properties and potential applications to Li-battery anode materials [J]. Solid State Communications, 2011, 151(18): 1228–1230. doi: 10.1016/j.ssc.2011.06.001
    [10] ZHAO Z, TIAN F, DONG X, et al. Tetragonal allotrope of group 14 elements [J]. Journal of the American Chemical Society, 2012, 134(30): 12362–12365. doi: 10.1021/ja304380p
    [11] MALONE B D, SAU J D, COHEN M L. Ab initio survey of the electronic structure of tetrahedrally bonded phases of silicon [J]. Physical Review B, 2008, 78(3): 35210. doi: 10.1103/PhysRevB.78.035210
    [12] FAN Q, CHAI C, WEI Q, et al. Novel silicon allotropes: stability, mechanical, and electronic properties [J]. Journal of Applied Physics, 2015, 118(18): 185704. doi: 10.1063/1.4935549
    [13] LUO K, ZHAO Z, MA M, et al. Si10: a sp3 silicon allotrope with spirally connected Si5 tetrahedrons [J]. Chemistry of Materials, 2016, 28(18): 6441–6445. doi: 10.1021/acs.chemmater.6b02484
    [14] XIANG H J, HUANG B, KAN E, et al. Towards direct-gap silicon phases by the inverse band structure design approach [J]. Physical Review Letters, 2013, 110(11): 13–16.
    [15] WANG Q, XU B, SUN J, et al. Direct band gap silicon allotropes [J]. Journal of the American Chemical Society, 2014, 136(28): 9826–9829. doi: 10.1021/ja5035792
    [16] WANG Q, LUO K, MA M, et al. A new metastable metallic silicon allotrope [J]. Chinese Science Bulletin (Chinese Version), 2015, 60(27): 2616. doi: 10.1360/N972015-00200
    [17] WEN Z, LU G, MAO S, et al. Silicon nanotube anode for lithium-ion batteries [J]. Electrochemistry Communications, 2013, 29: 67–70. doi: 10.1016/j.elecom.2013.01.015
    [18] SUNG H J, HANG W H, LEE I H, et al. Superconducting open-framework allotrope of silicon at ambient pressure [J]. Physical Review Letters, 2018, 120(15): 157001. doi: 10.1103/PhysRevLett.120.157001
    [19] BAI J, ZENG X C, TANAKA H, et al. Metallic single-walled silicon nanotubes [J]. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101(9): 2664–2668. doi: 10.1073/pnas.0308467101
    [20] HEVER A, BERNSTEIN J, HOD O. Structural stability and electronic properties of sp3 type silicon nanotubes [J]. The Journal of chemical physics, 2012, 137(21): 214702. doi: 10.1063/1.4767389
    [21] LIN C, POVINELLI M L. Optical absorption enhancement in silicon nanowire arrays with a large lattice constant for photovoltaic applications [J]. Optics Express, 2009, 17(22): 19371–19381. doi: 10.1364/OE.17.019371
    [22] CLARK S J, SEGALL M D, PICKARD C J, et al. First principles methods using CASTEP [J]. Zeitschrift für Kristallographie–Crystalline Materials, 2005, 220(5/6): 567–570.
    [23] WANG Y, LV J, ZHU L, et al. CALYPSO: A method for crystal structure prediction [J]. Computer Physics Communications, 2012, 183(10): 2063–2070. doi: 10.1016/j.cpc.2012.05.008
    [24] WANG Y, LV J, ZHU L, et al. Crystal structure prediction via particle-swarm optimization [J]. Physical Review B, 2010, 82(9): 094116.
    [25] LAASONEN K, CAR R, LEE C, et al. Implementation of ultrasoft pseudopotentials in ab initio molecular dynamics [J]. Physical Review B, 1991, 43(8): 6796–6799. doi: 10.1103/PhysRevB.43.6796
    [26] VANDERBILT D. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism [J]. Physical Review B, 1990, 41(11): 7892–7895. doi: 10.1103/PhysRevB.41.7892
    [27] PERDEW J P, ZUNGER A. Self-interaction correction to density-functional approximations for many-electron systems [J]. Physical Review B, 1981, 23(10): 5048–5079. doi: 10.1103/PhysRevB.23.5048
    [28] PURVEE B, SADHNA S. Pressure induced structural phase transitions–a review [J]. Central European Journal of Chemistry, 2012, 10(5): 1391–1422.
    [29] CEPERLEY D M, ALDER B J. Ground state of the electron gas by a stochastic method [J]. Physical Review Letters, 1980, 45(7): 566–569. doi: 10.1103/PhysRevLett.45.566
    [30] MONKHORST H J, PACK J D. Special points for Brillouin-zone integrations [J]. Physical Review B, 1976, 13(12): 5188. doi: 10.1103/PhysRevB.13.5188
    [31] KRESSE G, FURTHMÜLLER J, HAFNER J. Ab initio force constant approach to phonon dispersion relations of diamond and graphite [J]. Europhysics Letters, 1995, 32(9): 729. doi: 10.1209/0295-5075/32/9/005
    [32] TSE J S, KLUG D D, PATCHKOVSKII S, et al. Chemical bonding, electron-phonon coupling, and structural transformations in high-pressure phases of Si [J]. The Journal of Physical Chemistry B, 2006, 110(8): 3721–3726. doi: 10.1021/jp0554341
  • 加载中
图(8) / 表(4)
计量
  • 文章访问数:  11379
  • HTML全文浏览量:  4399
  • PDF下载量:  40
出版历程
  • 收稿日期:  2019-01-04
  • 修回日期:  2019-02-23

目录

    /

    返回文章
    返回