Effect of Re-Compression on the Pressure-Generation Efficiency and Pressure-Seal Capability of Large Volume Cubic Press
-
摘要: 随着六面顶压机大腔体静高压技术的发展,复杂多变的压力加载工艺被应用于高压科学研究和材料制备,但是不同压力加载工艺对压力发生效率和压力密封性能的影响尚未被充分研究。本工作在六面顶压机高压腔体和密封边内置入电路,通过原位测量Bi、Tl、Ba和锰铜丝的电阻,标定了一次加压和二次加压两种不同压力加载工艺下外部加载与腔体压力及密封边压力的对应关系。实验分析结果表明,二次加压工艺会导致腔体和密封边的压力发生效率明显降低,同时也会降低压力密封性能最差时对应的外部加载。此研究可为高压装置和压力加载工艺的优化设计提供指导。Abstract: With the rapid development of static high-pressure technology, the complex and variable compression processes are used in high-pressure scientific research. However, the effect of compression processes on the pressure-generation efficiency and pressure-seal capability has rarely been studied. Measuring the pressure of a gasket and cell in situ is the key point to understanding the mechanism of pressure-generation and pressure-seal. In the present work, we put a circuit into the cell or gasket of the large volume cubic press, and then the pressure in the compression or re-compression process are independently measured by in situ electric resistance measurements of bismuth, thallium, barium and manganin. It has been found that when compression process was replaced by re-compression process, the pressure-generation efficiency of cell and gasket was lowered; furthermore, the press load at the worst pressure-seal capability was also lowered. The method detailed in this paper is helpful to optimize the high-pressure assembly and compression process for the large volume cubic press.
-
Key words:
- large volume cubic press /
- re-compression /
- cell pressure /
- gasket pressure /
- pressure calibration
-
表 1 利用Bi、Tl和Ba标定的腔体及密封边压力
Table 1. Pressure calibration results for cell and gasket using Bi, Tl and Ba
Calibrated material Phase
change
typePressure/GPa Press load/MN Compression (Single) Re-compression Compression Decompression Compression Decompression Cell Gasket Cell Gasket Cell Gasket Cell Gasket Bi I–II 2.55 2.08±0.2 2.86±0.3 1.70±0.5 3.19±0.5 1.73±0.2 2.77±0.2 1.52±0.4 2.77±0.6 Tl II–III 3.68 3.58±0.3 4.00±0.2 2.46±0.6 3.88±0.3 3.81±0.3 4.29±0.3 2.49±0.5 3.33±0.4 Ba I–II 5.5 6.37±0.3 6.30±0.2 5.54±0.3 6.03±0.2 7.28±0.4 6.58±0.4 -
[1] HEMLEY R J, SOOS Z G, HANFLAND M, et al. Charge-transfer states in dense hydrogen charge-transfer states in dense hydrogen [J]. Nature, 1994, 369: 384–387. doi: 10.1038/369384a0 [2] IRIFUNE T, KURIO A, SAKAMOTO S, et al. Ultrahard polycrystalline diamond from graphite [J]. Nature, 2003, 421: 599–600. [3] MA Y M, EREMETS M, OGANOV A R, et al. Transparent dense sodium [J]. Nature, 2009, 458: 182–185. doi: 10.1038/nature07786 [4] OGANOV A R, ONO S. Theoretical and experimental evidence for a post-perovskite phase of MgSiO3 in Earth’s D” layer [J]. Nature, 2004, 430: 445–448. doi: 10.1038/nature02701 [5] QIN J Q, HE D W, WANG J H, et al. Is rhenium diboride a superhard material? [J]. Advanced Materials, 2008, 20(24): 4780–4783. doi: 10.1002/adma.v20:24 [6] TIAN Y J, XU B, YU D L, et al. Ultrahard nanotwinned cubic boron nitride [J]. Nature, 2013, 493: 385–388. doi: 10.1038/nature11728 [7] XU C, HE D W, WANG H K, et al. Nano-polycrystalline diamond formation under ultra-high pressure [J]. International Journal of Refractory Metals and Hard Materials, 2013, 36: 232–237. doi: 10.1016/j.ijrmhm.2012.09.004 [8] 彭放, 贺端威. 应用于高压科学研究的国产铰链式六面顶压机技术发展历程 [J]. 高压物理学报, 2018, 32(1): 010105PENG F, HE D W. Development of domestic hinge-type cubic presses based on high pressure scientific research [J]. Chinese Journal of High Pressure Physics, 2018, 32(1): 010105 [9] GUAN S X, PENG F, LIANG H, et al. Fragmentation and stress diversification in diamond powder under high pressure [J]. Journal of Applied Physics, 2018, 124(21): 215902. doi: 10.1063/1.5051749 [10] LIANG A K, LIU Y J, LIANG H, et al. Thermal insulation performance of monoclinic ZrO2 and cubic ZrO2–CaO solid solution under high pressure and high temperature [J]. High Pressure Research, 2018, 38(4): 458–467. doi: 10.1080/08957959.2018.1517341 [11] WANG P, HE D W, WANG L P, et al. Diamond-cBN alloy: a universal cutting material [J]. Applied Physics Letters, 2015, 107(10): 101901. doi: 10.1063/1.4929728 [12] WU J J, LIU F M, ZHANG J W, et al. Cobalt-doped magnesium oxide pressure-transmitting medium for high pressure and high-temperature apparatus [J]. High Pressure Research, 2018, 38(4): 448–457. doi: 10.1080/08957959.2018.1510922 [13] LIU J, ZHAN G D, WANG Q, et al. Superstrong micro-grained polycrystalline diamond compact through work hardening under high pressure [J]. Applied Physics Letters, 2018, 112(6): 061901. doi: 10.1063/1.5016110 [14] LIU Y J, ZHANG J W, HE D W, et al. Exploring the compression behavior of HP-BiNbO4 under high pressure [J]. Chinese Physics B, 2017, 26(11): 116202. doi: 10.1088/1674-1056/26/11/116202 [15] DING W, HAN J J, HU Q W, et al. Stress control of heterogeneous nanocrystalline diamond sphere through pressure-temperature tuning [J]. Applied Physics Letters, 2017, 110(12): 121908. doi: 10.1063/1.4979006 [16] HAN Q G, MA H A, HUANG G F, et al. Hybrid-anvil: a suitable anvil for large volume cubic high pressure apparatus [J]. Review of Scientific Instruments, 2009, 80(9): 096107. doi: 10.1063/1.3227239 [17] LIU X, CHEN J L, TANG J J, et al. A large volume cubic press with a pressure-generating capability up to about 10 GPa [J]. High Pressure Research, 2012, 32(2): 239–254. [18] 田金刚. 合成钻石: " 黑天鹅”的蜕变和突围 [EB/OL]. (2018-10-25)[2019-01-04]. http://www.gold.org.cn/zb1227/sd/201810/t20181025_180697.html.TIAN J G. Synthetic diamonds: the transformation and breakout of " Black swan” [EB/OL]. (2018-10-25)[2019-01-04]. http://www.gold.org.cn/zb1227/sd/201810/t20181025_180697.html. [19] FANG L M, HE D W, CHEN C, et al. Effect of precompression on pressure-transmitting efficiency of pyrophyllite gaskets [J]. High Pressure Research, 2007, 27(3): 367–374. doi: 10.1080/08957950701553796 [20] ZHANG J W, LIU F M, WU J J, et al. Experimental study on the pressure-generation efficiency and pressure-seal mechanism for large volume cubic press [J]. Review of Scientific Instruments, 2018, 89(7): 075106. doi: 10.1063/1.5030092 [21] SHATSKIY A, KATSURA T, LITASOV K D, et al. High pressure generation using scaled-up Kawai-cell [J]. Physics of the Earth and Planetary Interiors, 2011, 189(1): 92–108. [22] 王海阔, 任瑛, 贺端威, 等. 六面顶压机立方压腔内压强的定量测量及受力分析 [J]. 物理学报, 2017, 66(9): 090702 doi: 10.7498/aps.66.090702WANG H K, REN Y, HE D W, et al. Force analysis and pressure quantitative measurement for the high pressure cubic cell [J]. Acta Physica Sinica, 2017, 66(9): 090702 doi: 10.7498/aps.66.090702 [23] WANG H K, HE D W, YAN X Z, et al. Quantitative measurements of pressure gradients for the pyrophyllite and magnesium oxide pressure-transmitting mediums to 8 GPa in a large-volume cubic cell [J]. High Pressure Research, 2011, 31(4): 581–591. doi: 10.1080/08957959.2011.614238 [24] WANG H K, HE D W, TAN N, et al. Note: an anvil-preformed gasket system to extend the pressure range for large volume cubic presses [J]. Review of Scientific Instruments, 2010, 81(11): 116102. doi: 10.1063/1.3488606 [25] WANG H K, HE D W. A hybrid pressure cell of pyrophyllite and magnesium oxide to extend the pressure range for large volume cubic presses [J]. High Pressure Research, 2012, 32(2): 186–194. [26] KAWAZOE T, NISHIYAMA N, NISHIHARA Y, et al. Pressure generation to 25 GPa using a cubic anvil apparatus with a multi-anvil 6-6 assembly [J]. High Pressure Research, 2010, 30(1): 167–174. doi: 10.1080/08957950903503912 [27] LI R, XU B J, ZHANG Q C, et al. Finite-element analysis on pressure transfer mechanism in large-volume cubic press [J]. High Pressure Research, 2016, 36(4): 575–584. doi: 10.1080/08957959.2016.1238915 [28] MAO H K, BELL P M. Electrical resistivity measurements of conductors in the diamond-window, high-pressure cell [J]. Review of Scientific Instruments, 1981, 52(4): 615–616. doi: 10.1063/1.1136650 [29] ANDERSSON G, SUNDQVIST B, BÄCKSTRÖM G. A high-pressure cell for electrical resistance measurements at hydrostatic pressures up to 8 GPa: results for Bi, Ba, Ni, and Si [J]. Journal of Applied Physics, 1989, 65(10): 3943–3950. doi: 10.1063/1.343360 [30] YAN X Z, REN X T, HE D W. Pressure calibration in solid pressure transmitting medium in large volume press [J]. Review of Scientific Instruments, 2016, 87(12): 125006. doi: 10.1063/1.4973448 [31] SINGH A K. The kinetics of pressure-induced polymorphic transformations [J]. Bulletin of Materials Science, 1983, 5(3): 219–230. [32] DAVIDSON T E, LEE A P. The study of the structural and transformation characteristics of the pressure-induced polymorphs in bismuth [J]. Transactions of the Metallurgical Society of AIME, 1964, 230: 1035–1036.