多层级夹芯结构的变形与能量吸收

冯根柱 于博丽 李世强 刘志芳

冯根柱, 于博丽, 李世强, 刘志芳. 多层级夹芯结构的变形与能量吸收[J]. 高压物理学报, 2019, 33(5): 055902. doi: 10.11858/gywlxb.20180707
引用本文: 冯根柱, 于博丽, 李世强, 刘志芳. 多层级夹芯结构的变形与能量吸收[J]. 高压物理学报, 2019, 33(5): 055902. doi: 10.11858/gywlxb.20180707
FENG Genzhu, YU Boli, LI Shiqiang, LIU Zhifang. Deformation and Energy Absorption of Multi-Hierarchical Sandwich Structures[J]. Chinese Journal of High Pressure Physics, 2019, 33(5): 055902. doi: 10.11858/gywlxb.20180707
Citation: FENG Genzhu, YU Boli, LI Shiqiang, LIU Zhifang. Deformation and Energy Absorption of Multi-Hierarchical Sandwich Structures[J]. Chinese Journal of High Pressure Physics, 2019, 33(5): 055902. doi: 10.11858/gywlxb.20180707

多层级夹芯结构的变形与能量吸收

doi: 10.11858/gywlxb.20180707
基金项目: 国家自然科学基金(11772216,11602161)
详细信息
    作者简介:

    冯根柱(1993-),男,硕士研究生,主要从事冲击动力学研究. E-mail:fenggenzhu0989@link.tyut.edu.cn

    通讯作者:

    刘志芳(1971-),女,副教授,主要从事冲击动力学研究. E-mail:liuzhifang@tyut.edu.cn

  • 中图分类号: O341

Deformation and Energy Absorption of Multi-Hierarchical Sandwich Structures

  • 摘要: 采用数值模拟与理论分析相结合的方法研究了多层级波纹板夹芯结构在准静态压缩载荷下的变形规律与能量吸收性能,建立了结构临界失效载荷的计算公式,并与数值模拟结果进行了对比,理论预测与数值模拟结果吻合较好。分析了芯层厚度对二级芯层结构在压缩载荷下的变形模式及能量吸收性能的影响,并与一级结构进行了对比。结果表明:二级芯层结构的能量吸收性能显著优于一级芯层结构;随着结构芯层厚度增加,二级结构的比吸能和载荷效率增大;芯层厚度较小时二级单层结构的比吸能高于二级双层和三层结构,二级双层结构的比吸能略高于二级三层结构。

     

  • 图  芯层结构模型设计

    Figure  1.  Corrugated core design of sandwich structure

    图  结构单胞受力示意图

    Figure  2.  Force diagram of structural unit cell

    图  小支撑变形示意图

    Figure  3.  Deformation diagram of the horizontal small supporter

    图  层级波纹板夹芯结构有限元模型

    Figure  4.  Finite element model of the hierarchical corrugated core sandwich structure

    图  6061-T6铝合金材料的应力-应变曲线

    Figure  5.  Stress-strain curve of Al 6061-T6

    图  准静态分析

    Figure  6.  Quasi-static simulation

    图  不同芯层厚度结构力-位移曲线

    Figure  7.  Force-displacement curves of the structure with different core thicknesses

    图  结构失效载荷对比

    Figure  8.  Comparison of structural failure loads

    图  一级结构变形模式

    Figure  9.  Deformation modes of the first structure

    图  10  不同芯层厚度下结构的变形模式

    Figure  10.  Deformation modes of structure with different core thicknesses

    图  11  结构的比吸能柱状图

    Figure  11.  Specific energy absorption column graph of the structure

    图  12  结构的载荷效率

    Figure  12.  Load efficiency of the structure

    表  1  6061-T6铝合金材料性能

    Table  1.   Material properties of aluminum 6061-T6

    Material${\;\rho }$/(g·cm–3)${{\sigma _{\rm{y}}}}$/MPaE/GPa${\nu }$
    Al 6061-T62.700251690.33
    下载: 导出CSV

    表  2  模型尺寸

    Table  2.   Size parameters of the model

    Typel/mmla/mmlb/mmta/mmtb/mm${ \theta }$/(°)${ \omega }$/(°)
    First order50100260
    Second order-150100100.565/0.75/1.00/1.250.565/0.75/1.00/1.256060
    Second order-250100100.565/0.75/1.00/1.250.565/0.75/1.00/1.256060
    Second order-350100100.565/0.75/1.00/1.250.565/0.75/1.00/1.256060
    下载: 导出CSV
  • [1] LAKES R. Materials with structural hierarchy [J]. Nature, 1993, 361(6412): 511–515. doi: 10.1038/361511a0
    [2] ZHANG J, SUPERNAK P, MUELLER-ALANDER S, et al. Improving the bending strength and energy absorption of corrugated sandwich composite structure [J]. Materials & Design, 2013, 52(24): 767–773.
    [3] HE W, LIU J, TAO B, et al. Experimental and numerical research on the low velocity impact behavior of hybrid corrugated core sandwich structures [J]. Composite Structures, 2016, 158: 30–43. doi: 10.1016/j.compstruct.2016.09.009
    [4] HOU S, SHU C, ZHAO S, et al. Experimental and numerical studies on multi-layered corrugated sandwich panels under crushing loading [J]. Composite Structures, 2015, 126: 371–385. doi: 10.1016/j.compstruct.2015.02.039
    [5] MEZA L R, ZELHOFER A J, CLARKE N, et al. Resilient 3D hierarchical architected metamaterials [J]. Proceedings of the National Academy of Sciences, 2015, 112(37): 11502–11507. doi: 10.1073/pnas.1509120112
    [6] KOOISTRA G, DESHPANDE V, WADLEY H. Hierarchical corrugated core sandwich panel concepts [J]. Journal of Applied Mechanics, 2007, 74(2): 259–268. doi: 10.1115/1.2198243
    [7] VELEA M N, SCHNEIDER C, LACHE S. Second order hierarchical sandwich structure made of self-reinforced polymers by means of a continuous folding process [J]. Materials & Design, 2016, 102: 313–320.
    [8] WU Q, GAO Y, WEI X, et al. Mechanical properties and failure mechanisms of sandwich panels with ultra-lightweight three-dimensional hierarchical lattice cores [J]. International Journal of Solids and Structures, 2017, s132/s133: 171–187.
    [9] WU Q, ASHKAN V, MOHAMAD E A, et al. Lattice materials with pyramidal hierarchy: systematic analysis and three dimensional failure mechanism maps [J]. Journal of the Mechanics and Physics of Solids, 2019, 125: 112–114. doi: 10.1016/j.jmps.2018.12.006
    [10] LIU H, CHEN L, DU B, et al. Flatwise compression property of hierarchical thermoplastic composite square lattice [J]. Composite Structures, 2019, 210: 118–133. doi: 10.1016/j.compstruct.2018.11.047
    [11] 王志华, 朱峰, 赵隆茂. 多孔金属夹芯结构动力学行为及其应用 [M]. 北京: 兵器工业出版社, 2010: 1–27.

    WANG Z H, ZHU F, ZHAO L M. Dynamic behavior and application of sandwich structures with cellular metal cores [M]. Beijing: The Publishing House of Ordnance Industry, 2010: 1–27.
    [12] JING L, WANG Z, ZHAO L. The dynamic response of sandwich panels with cellular metal cores to localized impulsive loading [J]. Composites Part B, 2016, 94: 52–63. doi: 10.1016/j.compositesb.2016.03.035
    [13] CHEN Y, JIA Z, WANG L. Hierarchical honeycomb lattice metamaterials with improved thermal resistance and mechanical properties [J]. Composite Structures, 2016, 152: 395–402. doi: 10.1016/j.compstruct.2016.05.048
    [14] CHEN Y, LI T, JIA Z, et al. 3D printed hierarchical honeycombs with shape integrity under large compressive deformations [J]. Materials & Design, 2018, 137: 226–234.
    [15] YIN H, HUANG X, SCARPA F, et al. In-plane crashworthiness of bio-inspired hierarchical honeycombs [J]. Composite Structures, 2018, 192: 516–527. doi: 10.1016/j.compstruct.2018.03.050
    [16] QIAO J, CHEN C. In-plane crushing of a hierarchical honeycomb [J]. International Journal of Solids & Structures, 2012, 85/86: 57–66.
    [17] 方耀楚. 二级层级褶皱结构力学性能研究与优化设计 [D]. 大连: 大连理工大学, 2014: 25–47.

    FANG Y C. Mechanical properties and optimal design of hierarchical corrugated structure with the second order [D]. Dalian: Dalian University of Technology, 2014: 25–47.
    [18] 田泽, 韩阳, 尹晓文, 等. 截面几何参数对帽型梁轴向冲击响应的影响 [J]. 高压物理学报, 2018, 32(5): 94–101. doi: 10.11858/gywlxb.20180521

    TIAN Z, HAN Y, YIN X W, et al. Effect of sectional geometrical parameters on axial impact responses of hat-section beam [J]. Chinese Journal of High Pressure Physics, 2018, 32(5): 94–101. doi: 10.11858/gywlxb.20180521
    [19] SANTOSA S P, WIERZBICKI T. Experimental and numerical studies of foam-filled sections [J]. International Journal of Impact Engineering, 2000, 24(5): 509–534. doi: 10.1016/S0734-743X(99)00036-6
    [20] 宋宏伟, 范子杰, 虞钢. 几类典型耐撞性结构吸能性能的比较[C]//2004汽车安全技术国际研讨会暨汽车安全技术学术年会, 2004.
  • 加载中
图(12) / 表(2)
计量
  • 文章访问数:  7785
  • HTML全文浏览量:  3317
  • PDF下载量:  50
出版历程
  • 收稿日期:  2018-12-27
  • 修回日期:  2019-01-15

目录

    /

    返回文章
    返回