Pressure Characteristics of Shallow Water Explosion near the Rigid Column
-
摘要: 刚性柱附近浅水爆炸时冲击波传播、气泡射流受多种因素影响。考虑水面、水底、刚性柱与水下爆炸冲击波及气泡的耦合作用,基于LS-DYNA有限元软件,建立浅水爆炸全耦合模型,通过经验公式验证有限元模型的正确性。研究表明:采用炸药直径1/3~1/2中心渐变网格能够较好地保证数值模拟精度。在冲击波传播阶段,刚性柱迎爆区冲击波峰值上升并产生切断现象,冲击波下降段被“截断”,而背爆区冲击波峰值衰减约50%,同时正压作用时间增加;在气泡脉动阶段,气泡在收缩阶段产生指向刚性柱的气泡射流,当刚性柱与炸药之间的距离约为一个气泡半径时,刚性柱附近的脉冲荷载增幅最大,脉冲荷载最大测点水深较爆心上移。Abstract: Shock wave propagation and bubble jet in the shallow water explosion near a rigid column are affected by many factors. Considering the influence of free water surface, water bottom boundary and rigid column, the coupling numerical model was established based on LS-DYNA, and the feasibility of numerical method is assured by comparison of simulation results and empirical results. The results show that the accuracy of numerical simulation can be better guaranteed if one-third and one-half of the explosive diameter as mesh size is adapted. During the shock wave propagation, the peak pressure in front of the column rises while the cut-off phenomenon causes during the shock wave pressure decreases, and the peak pressure behind the column decreases by approximately 50% while load duration increases. The jet is formed directivity to the column at the complete moment of the first bubble pulsation. The bubble impulse pressure increases most dramatically when the explosive is at a distance of explosive radius from the column, and the depth of the maximum impulse pressure is higher than the depth of explosive.
-
Key words:
- shallow water explosion /
- rigid column /
- cut-off phenomenon /
- jet /
- numerical simulation
-
表 1 有限元计算模型材料参数
Table 1. Material parameters of FEM calculation model
Material ρ/(kg·m–3) C0, C1, C2, C3 C4 C5 C6 E/(J·kg–1) Air 1.29 0 0.4 0.4 0 2.5×105 Material ρ/(kg·m–3) C S1 S2 S3 γ Water 1000 1480 2.56 –1.986 0.2268 0.5 Material ρ/(kg·m–3) A/GPa B/GPa ω R1 R2 TNT 1630 374 7.33 0.3 4.15 0.95 Material ρ/(kg·m–3) E/MPa G/MPa Soil 1800 22.4 8 表 2 数值模拟与经验公式比较
Table 2. Comparison of the numerical and theoretical results
S/m Pmax Rm T Theoretical results/MPa Numerical results/MPa Error/% Theoretical results/m Numerical results/m Error/% Theoretical results/s Numerical results/s Error/% 2 135.05 137.36 1.71 5.00 5.12 2.40 0.56 0.53 5.40 4 61.71 62.39 1.10 6 39.03 38.78 0.63 8 28.20 27.21 3.50 10 21.91 20.80 5.07 12 16.78 17.21 3.49 14 14.98 14.02 6.42 表 3 刚性柱附近冲击波荷载比较
Table 3. Comparison of the pressure near a rigid column
de Measuring area Pmax Ib Near rigid column/MPa No rigid column/MPa Increase/% Near rigid column/(kN·s·m–2) No rigid column/(kN·s·m–2) Increase/% 0.39 In front of column 278.68 137.36 102.88 111.53 83.71 33.23 Behind the column 34.82 80.88 –56.95 39.77 57.01 –30.24 0.98 In front of column 87.64 46.9 86.87 43.16 36.65 17.76 Behind the column 19.95 38.78 –48.56 26.30 29.28 –10.18 1.95 In front of column 34.74 21.08 64.80 18.77 16.59 13.14 Behind the column 11.98 19.02 –37.01 13.36 15.94 –16.19 表 4 刚性柱迎爆区气泡脉冲荷载比较
Table 4. Peak pressure of bubble impulse near a rigid column
de Pmax/MPa Depth of the maximum
impulse/mIncrease/% 0.39 9.66 6 15.83 0.98 6.33 7 29.45 1.95 1.58 6.04 -
[1] 高勇军, 王伟策, 陈小波, 等. 浅层水中爆炸冲击波压力的测试与分析 [J]. 爆破, 1999(1): 9–13. doi: 10.3969/j.issn.1001-8352.1999.01.003GAO Y J, WANG W C, CHEN X B, et al. Testing and analysis on shock wave pressure generated by explosion under shallow water [J]. Blasting, 1999(1): 9–13. doi: 10.3969/j.issn.1001-8352.1999.01.003 [2] 顾文彬, 叶序双, 张朋祥, 等. 浅层水中爆炸水底影响的试验研究 [J]. 解放军理工大学自然科学版, 2001, 2(2): 55–58. doi: 10.7666/j.issn.1009-3443.20010213GU W B, YE X S, ZHANG P X, et al. Experimental studies of bottom influence in shallow-layer water explosion [J]. Journal of PLA University of Science and Technology, 2001, 2(2): 55–58. doi: 10.7666/j.issn.1009-3443.20010213 [3] 顾文彬, 孙百连, 阳天海, 等. 浅层水中沉底爆炸冲击波相互作用数值模拟 [J]. 解放军理工大学自然科学版, 2003, 4(6): 64–68. doi: 10.7666/j.issn.1009-3443.20030615GU W B, SUN B L, YANG T H, et al. Numerical simulation of explosive shockwave interaction in shallow-layer water [J]. Journal of PLA University of Science and Technology, 2003, 4(6): 64–68. doi: 10.7666/j.issn.1009-3443.20030615 [4] 韦灼彬, 唐廷, 王立军. 港口水下爆炸荷载冲击特性研究 [J]. 振动与冲击, 2014, 33(6): 18–22.WEI Z B, TANG T, WANG L J. Shock characteristics of underwater explosion in port [J]. Journal of Vibration and Shock, 2014, 33(6): 18–22. [5] 方斌, 朱锡, 张振华. 垂直刚性面边界条件下水下爆炸气泡运动的理论研究 [J]. 海军工程大学学报, 2007, 19(2): 81–85. doi: 10.3969/j.issn.1009-3486.2007.02.018FANG B, ZHU X, ZHANG Z H. Theoretical study of the pulsation of an underwater explosion bubble with a vertical rigid plane [J]. Journal of Naval University of Engineering, 2007, 19(2): 81–85. doi: 10.3969/j.issn.1009-3486.2007.02.018 [6] 方斌, 朱锡, 陈细弟, 等. 水平刚性面下方水下爆炸气泡垂向运动的理论研究 [J]. 爆炸与冲击, 2006, 26(4): 345–350. doi: 10.3321/j.issn:1001-1455.2006.04.010FANG B, ZHU X, CHEN X D, et al. Pulsation dynamics of an underwater explosion bubble vertical migrating to a horizontal rigid plane [J]. Explosion and Shock Waves, 2006, 26(4): 345–350. doi: 10.3321/j.issn:1001-1455.2006.04.010 [7] 牟金磊, 朱石坚, 刁爱民, 等. 边界条件对水下爆炸气泡运动特性的影响分析 [J]. 振动与冲击, 2014, 33(13): 92–97.MU J L, ZHU S J, DIAO A M. Analysis on the characteristics of UNDEX bubbles under different boundary conditions [J]. Journal of Vibration and Shock, 2014, 33(13): 92–97. [8] 牟金磊, 朱锡, 黄晓明. 近壁面水下爆炸冲击波载荷参数研究 [J]. 海军工程大学学报, 2011, 23(1): 23–27. doi: 10.3969/j.issn.1009-3486.2011.01.005MU J L, ZHU X, HUANG X M. Parameters of shock waves from underwater explosion near structures [J]. Journal of Naval University of Engineering, 2011, 23(1): 23–27. doi: 10.3969/j.issn.1009-3486.2011.01.005 [9] 朱锡, 李海涛, 牟金磊, 等. 水下近距爆炸作用下船体梁的动态响应特性 [J]. 高压物理学报, 2010, 24(5): 343–350. doi: 10.11858/gywlxb.2010.05.005ZHU X, LI H T, MU J L, et al. Dynamic response of characteristics of ship-like beam subjected underwater explosion in near field [J]. Chinese Journal of High Pressure Physics, 2010, 24(5): 343–350. doi: 10.11858/gywlxb.2010.05.005 [10] 张阿漫, 姚熊亮. 复杂边界附近气泡的动态特性研究 [J]. 力学季刊, 2008, 29(1): 24–32.ZHANG A M, YAO X L. Dynamic of bubble near complex boundary [J]. Chinese Quarterly of Mechanics, 2008, 29(1): 24–32. [11] 张阿漫, 姚熊亮. 近自由面水下爆炸气泡的运动规律研究 [J]. 物理学报, 2008, 57(1): 339–353. doi: 10.3321/j.issn:1000-3290.2008.01.054ZHANG A M, YAO X L. The law of the underwater explosion bubble motion near free surface [J]. Acta Physica Sinica, 2008, 57(1): 339–353. doi: 10.3321/j.issn:1000-3290.2008.01.054 [12] BENJAMIN T B, ELLIS A T. The collapse of cavitation bubbles and the pressures thereby produced against solid boundaries [J]. Philosophical Transactions of the Royal Society of London, 1966, 260(1110): 221–240. doi: 10.1098/rsta.1966.0046 [13] RAJENDRAN R, NARASIMHAN K. Deformation and fracture behaviour of plate specimens subjected to underwater explosion–a review [J]. International Journal of Impact Engineering, 2006, 32(12): 1945–1963. doi: 10.1016/j.ijimpeng.2005.05.013 [14] RAJENDRAN R, LEE J M. Blast loaded plates [J]. Marine Structures, 2009, 22(2): 99–127. doi: 10.1016/j.marstruc.2008.04.001 [15] HUNG C F, HWANGFU J J. Experimental study of the behaviour of mini-charge underwater explosion bubbles near different boundaries [J]. Journal of Fluid Mechanics, 2010, 651: 55. doi: 10.1017/S0022112009993776 [16] WARDLAW A B, LUTON J A. Fluid-structure interaction mechanisms for close-in explosions [J]. Shock and Vibration, 2015, 7(5): 265–275. [17] 陈永念. 舰船水下爆炸数值仿真及抗爆结构研究 [D]. 上海: 上海交通大学, 2008.CHEN Y N. Study on damage mechanism in ship underwater explosion and structure anti-shock [D]. Shanghai: Shanghai Jiao Tong University, 2008. [18] WANG G, WANG Y, LU W, et al. On the determination of the mesh size for numerical simulations of shock wave propagation in near field underwater explosion [J]. Applied Ocean Research, 2016, 38(59): 1–9. [19] 张社荣, 李宏璧, 王高辉, 等. 水下爆炸冲击波数值模拟的网格尺寸确定方法 [J]. 振动与冲击, 2015, 34(8): 93–100.ZHANG S R, LI H B, WANG G H, et al. A method to determine mesh size in numerical simulation of shock wave of underwater explosion [J]. Journal of Vibration and Shock, 2015, 34(8): 93–100.