刚性柱附近浅水爆炸荷载特性研究

刘靖晗 唐廷 韦灼彬 于小存 李凌锋 张元豪

刘靖晗, 唐廷, 韦灼彬, 于小存, 李凌锋, 张元豪. 刚性柱附近浅水爆炸荷载特性研究[J]. 高压物理学报, 2019, 33(5): 055104. doi: 10.11858/gywlxb.20180704
引用本文: 刘靖晗, 唐廷, 韦灼彬, 于小存, 李凌锋, 张元豪. 刚性柱附近浅水爆炸荷载特性研究[J]. 高压物理学报, 2019, 33(5): 055104. doi: 10.11858/gywlxb.20180704
LIU Jinghan, TANG Ting, WEI Zhuobin, YU Xiaocun, LI Lingfeng, ZHANG Yuanhao. Pressure Characteristics of Shallow Water Explosion near the Rigid Column[J]. Chinese Journal of High Pressure Physics, 2019, 33(5): 055104. doi: 10.11858/gywlxb.20180704
Citation: LIU Jinghan, TANG Ting, WEI Zhuobin, YU Xiaocun, LI Lingfeng, ZHANG Yuanhao. Pressure Characteristics of Shallow Water Explosion near the Rigid Column[J]. Chinese Journal of High Pressure Physics, 2019, 33(5): 055104. doi: 10.11858/gywlxb.20180704

刚性柱附近浅水爆炸荷载特性研究

doi: 10.11858/gywlxb.20180704
基金项目: 军队后勤科研计划项目(CHJ13J006)
详细信息
    作者简介:

    刘靖晗(1992-),男,博士研究生,主要从事港口工程、防护工程研究.E-mail:1226001717@qq.com

    通讯作者:

    唐 廷(1980-),男,博士,讲师,主要从事港口工程、防护工程研究.E-mail:tangting1980@126.com

  • 中图分类号: O383

Pressure Characteristics of Shallow Water Explosion near the Rigid Column

  • 摘要: 刚性柱附近浅水爆炸时冲击波传播、气泡射流受多种因素影响。考虑水面、水底、刚性柱与水下爆炸冲击波及气泡的耦合作用,基于LS-DYNA有限元软件,建立浅水爆炸全耦合模型,通过经验公式验证有限元模型的正确性。研究表明:采用炸药直径1/3~1/2中心渐变网格能够较好地保证数值模拟精度。在冲击波传播阶段,刚性柱迎爆区冲击波峰值上升并产生切断现象,冲击波下降段被“截断”,而背爆区冲击波峰值衰减约50%,同时正压作用时间增加;在气泡脉动阶段,气泡在收缩阶段产生指向刚性柱的气泡射流,当刚性柱与炸药之间的距离约为一个气泡半径时,刚性柱附近的脉冲荷载增幅最大,脉冲荷载最大测点水深较爆心上移。

     

  • 图  有限元计算模型

    Figure  1.  FEM calculation model

    图  不同网格尺寸下的冲击波峰值压力

    Figure  2.  Shock peak pressures simulated by different mesh sizes

    图  不同网格尺寸下冲击波峰值压力偏差

    Figure  3.  Error of shock peak pressures for different mesh sizes

    图  刚性柱有限元计算模型

    Figure  4.  FEM calculation model of rigid column

    图  刚性柱附近冲击波传播过程

    Figure  5.  Propagation of shock wave near a rigid column

    图  冲击波荷载时程曲线

    Figure  6.  Time history curve of shock wave load

    图  刚性柱附近冲击波峰值压力的变化

    Figure  7.  Peak pressure of shock wave near a rigid column

    图  刚性柱附近冲击波比冲量的变化

    Figure  8.  Specific impulse of shock wave near a rigid column

    图  刚性柱附近气泡射流压力等值线

    Figure  9.  Pressure peak contour of bubble impulse near a rigid column

    表  1  有限元计算模型材料参数

    Table  1.   Material parameters of FEM calculation model

    Materialρ/(kg·m–3)C0, C1, C2, C3C4C5C6E/(J·kg–1)
    Air1.2900.40.402.5×105
    Materialρ/(kg·m–3)CS1S2S3γ
    Water100014802.56–1.9860.22680.5
    Materialρ/(kg·m–3)A/GPaB/GPaωR1R2
    TNT16303747.330.34.150.95
    Materialρ/(kg·m–3)E/MPaG/MPa
    Soil180022.48
    下载: 导出CSV

    表  2  数值模拟与经验公式比较

    Table  2.   Comparison of the numerical and theoretical results

    S/mPmaxRmT
    Theoretical results/MPaNumerical results/MPaError/%Theoretical results/mNumerical results/mError/%Theoretical results/sNumerical results/sError/%
    2135.05137.361.715.005.122.400.560.535.40
    4 61.7162.391.10
    6 39.0338.780.63
    8 28.2027.213.50
    10 21.9120.805.07
    12 16.7817.213.49
    14 14.9814.026.42
    下载: 导出CSV

    表  3  刚性柱附近冲击波荷载比较

    Table  3.   Comparison of the pressure near a rigid column

    deMeasuring areaPmaxIb
    Near rigid column/MPaNo rigid column/MPaIncrease/%Near rigid column/(kN·s·m–2)No rigid column/(kN·s·m–2)Increase/%
    0.39In front of column278.68137.36102.88111.5383.7133.23
    Behind the column34.8280.88–56.9539.7757.01–30.24
    0.98In front of column87.6446.986.8743.1636.6517.76
    Behind the column19.9538.78–48.5626.3029.28–10.18
    1.95In front of column34.7421.0864.8018.7716.5913.14
    Behind the column11.9819.02–37.0113.3615.94–16.19
    下载: 导出CSV

    表  4  刚性柱迎爆区气泡脉冲荷载比较

    Table  4.   Peak pressure of bubble impulse near a rigid column

    dePmax/MPaDepth of the maximum
    impulse/m
    Increase/%
    0.399.66615.83
    0.986.33729.45
    1.951.58 6.04
    下载: 导出CSV
  • [1] 高勇军, 王伟策, 陈小波, 等. 浅层水中爆炸冲击波压力的测试与分析 [J]. 爆破, 1999(1): 9–13. doi: 10.3969/j.issn.1001-8352.1999.01.003

    GAO Y J, WANG W C, CHEN X B, et al. Testing and analysis on shock wave pressure generated by explosion under shallow water [J]. Blasting, 1999(1): 9–13. doi: 10.3969/j.issn.1001-8352.1999.01.003
    [2] 顾文彬, 叶序双, 张朋祥, 等. 浅层水中爆炸水底影响的试验研究 [J]. 解放军理工大学自然科学版, 2001, 2(2): 55–58. doi: 10.7666/j.issn.1009-3443.20010213

    GU W B, YE X S, ZHANG P X, et al. Experimental studies of bottom influence in shallow-layer water explosion [J]. Journal of PLA University of Science and Technology, 2001, 2(2): 55–58. doi: 10.7666/j.issn.1009-3443.20010213
    [3] 顾文彬, 孙百连, 阳天海, 等. 浅层水中沉底爆炸冲击波相互作用数值模拟 [J]. 解放军理工大学自然科学版, 2003, 4(6): 64–68. doi: 10.7666/j.issn.1009-3443.20030615

    GU W B, SUN B L, YANG T H, et al. Numerical simulation of explosive shockwave interaction in shallow-layer water [J]. Journal of PLA University of Science and Technology, 2003, 4(6): 64–68. doi: 10.7666/j.issn.1009-3443.20030615
    [4] 韦灼彬, 唐廷, 王立军. 港口水下爆炸荷载冲击特性研究 [J]. 振动与冲击, 2014, 33(6): 18–22.

    WEI Z B, TANG T, WANG L J. Shock characteristics of underwater explosion in port [J]. Journal of Vibration and Shock, 2014, 33(6): 18–22.
    [5] 方斌, 朱锡, 张振华. 垂直刚性面边界条件下水下爆炸气泡运动的理论研究 [J]. 海军工程大学学报, 2007, 19(2): 81–85. doi: 10.3969/j.issn.1009-3486.2007.02.018

    FANG B, ZHU X, ZHANG Z H. Theoretical study of the pulsation of an underwater explosion bubble with a vertical rigid plane [J]. Journal of Naval University of Engineering, 2007, 19(2): 81–85. doi: 10.3969/j.issn.1009-3486.2007.02.018
    [6] 方斌, 朱锡, 陈细弟, 等. 水平刚性面下方水下爆炸气泡垂向运动的理论研究 [J]. 爆炸与冲击, 2006, 26(4): 345–350. doi: 10.3321/j.issn:1001-1455.2006.04.010

    FANG B, ZHU X, CHEN X D, et al. Pulsation dynamics of an underwater explosion bubble vertical migrating to a horizontal rigid plane [J]. Explosion and Shock Waves, 2006, 26(4): 345–350. doi: 10.3321/j.issn:1001-1455.2006.04.010
    [7] 牟金磊, 朱石坚, 刁爱民, 等. 边界条件对水下爆炸气泡运动特性的影响分析 [J]. 振动与冲击, 2014, 33(13): 92–97.

    MU J L, ZHU S J, DIAO A M. Analysis on the characteristics of UNDEX bubbles under different boundary conditions [J]. Journal of Vibration and Shock, 2014, 33(13): 92–97.
    [8] 牟金磊, 朱锡, 黄晓明. 近壁面水下爆炸冲击波载荷参数研究 [J]. 海军工程大学学报, 2011, 23(1): 23–27. doi: 10.3969/j.issn.1009-3486.2011.01.005

    MU J L, ZHU X, HUANG X M. Parameters of shock waves from underwater explosion near structures [J]. Journal of Naval University of Engineering, 2011, 23(1): 23–27. doi: 10.3969/j.issn.1009-3486.2011.01.005
    [9] 朱锡, 李海涛, 牟金磊, 等. 水下近距爆炸作用下船体梁的动态响应特性 [J]. 高压物理学报, 2010, 24(5): 343–350. doi: 10.11858/gywlxb.2010.05.005

    ZHU X, LI H T, MU J L, et al. Dynamic response of characteristics of ship-like beam subjected underwater explosion in near field [J]. Chinese Journal of High Pressure Physics, 2010, 24(5): 343–350. doi: 10.11858/gywlxb.2010.05.005
    [10] 张阿漫, 姚熊亮. 复杂边界附近气泡的动态特性研究 [J]. 力学季刊, 2008, 29(1): 24–32.

    ZHANG A M, YAO X L. Dynamic of bubble near complex boundary [J]. Chinese Quarterly of Mechanics, 2008, 29(1): 24–32.
    [11] 张阿漫, 姚熊亮. 近自由面水下爆炸气泡的运动规律研究 [J]. 物理学报, 2008, 57(1): 339–353. doi: 10.3321/j.issn:1000-3290.2008.01.054

    ZHANG A M, YAO X L. The law of the underwater explosion bubble motion near free surface [J]. Acta Physica Sinica, 2008, 57(1): 339–353. doi: 10.3321/j.issn:1000-3290.2008.01.054
    [12] BENJAMIN T B, ELLIS A T. The collapse of cavitation bubbles and the pressures thereby produced against solid boundaries [J]. Philosophical Transactions of the Royal Society of London, 1966, 260(1110): 221–240. doi: 10.1098/rsta.1966.0046
    [13] RAJENDRAN R, NARASIMHAN K. Deformation and fracture behaviour of plate specimens subjected to underwater explosion–a review [J]. International Journal of Impact Engineering, 2006, 32(12): 1945–1963. doi: 10.1016/j.ijimpeng.2005.05.013
    [14] RAJENDRAN R, LEE J M. Blast loaded plates [J]. Marine Structures, 2009, 22(2): 99–127. doi: 10.1016/j.marstruc.2008.04.001
    [15] HUNG C F, HWANGFU J J. Experimental study of the behaviour of mini-charge underwater explosion bubbles near different boundaries [J]. Journal of Fluid Mechanics, 2010, 651: 55. doi: 10.1017/S0022112009993776
    [16] WARDLAW A B, LUTON J A. Fluid-structure interaction mechanisms for close-in explosions [J]. Shock and Vibration, 2015, 7(5): 265–275.
    [17] 陈永念. 舰船水下爆炸数值仿真及抗爆结构研究 [D]. 上海: 上海交通大学, 2008.

    CHEN Y N. Study on damage mechanism in ship underwater explosion and structure anti-shock [D]. Shanghai: Shanghai Jiao Tong University, 2008.
    [18] WANG G, WANG Y, LU W, et al. On the determination of the mesh size for numerical simulations of shock wave propagation in near field underwater explosion [J]. Applied Ocean Research, 2016, 38(59): 1–9.
    [19] 张社荣, 李宏璧, 王高辉, 等. 水下爆炸冲击波数值模拟的网格尺寸确定方法 [J]. 振动与冲击, 2015, 34(8): 93–100.

    ZHANG S R, LI H B, WANG G H, et al. A method to determine mesh size in numerical simulation of shock wave of underwater explosion [J]. Journal of Vibration and Shock, 2015, 34(8): 93–100.
  • 加载中
图(9) / 表(4)
计量
  • 文章访问数:  6808
  • HTML全文浏览量:  3245
  • PDF下载量:  28
出版历程
  • 收稿日期:  2018-12-20
  • 修回日期:  2019-02-25

目录

    /

    返回文章
    返回