Diffusion of Helium in Calcite and Aragonite:A First-Principles Study

LI Shuchen LIU Hong YANG Yaochun DING Jianhua LIU Lei LI Ying YI Li TIAN Hua

李书晨, 刘红, 杨耀春, 丁建华, 刘雷, 李营, 易丽, 田华. 氦在方解石和文石中的扩散:基于第一性原理的研究[J]. 高压物理学报, 2019, 33(5): 052202. doi: 10.11858/gywlxb.20180698
引用本文: 李书晨, 刘红, 杨耀春, 丁建华, 刘雷, 李营, 易丽, 田华. 氦在方解石和文石中的扩散:基于第一性原理的研究[J]. 高压物理学报, 2019, 33(5): 052202. doi: 10.11858/gywlxb.20180698
LI Shuchen, LIU Hong, YANG Yaochun, DING Jianhua, LIU Lei, LI Ying, YI Li, TIAN Hua. Diffusion of Helium in Calcite and Aragonite:A First-Principles Study[J]. Chinese Journal of High Pressure Physics, 2019, 33(5): 052202. doi: 10.11858/gywlxb.20180698
Citation: LI Shuchen, LIU Hong, YANG Yaochun, DING Jianhua, LIU Lei, LI Ying, YI Li, TIAN Hua. Diffusion of Helium in Calcite and Aragonite:A First-Principles Study[J]. Chinese Journal of High Pressure Physics, 2019, 33(5): 052202. doi: 10.11858/gywlxb.20180698

Diffusion of Helium in Calcite and Aragonite:A First-Principles Study

doi: 10.11858/gywlxb.20180698
Funds: National Natural Science Foundation of China (41174071, 41573121); Seismic Fund of Institute of Earthquake Forecasting, China Earthquake Administration (CEA) (2016IES0101)
More Information
    Author Bio:

    LI Shuchen (1995-), female, master, major in condensed matter physics. E-mail: 642328905@qq.com

    Corresponding author: LIU Hong (1977-), female, Ph. D, expertise in earthquake science and condensed matter physics. E-mail: liuh@cea-ies.ac.cn
  • 摘要: 研究碳酸盐矿物中氦的扩散行为对理解地球脱气过程中的物理化学性质和动力过程具有重要意义。基于密度泛函理论研究了氦在方解石和文石矿物中的扩散机理,计算了氦在地表和地幔条件下的扩散路径、激活能(Ea)和频率因子(v)。计算结果表明:氦在方解石中的扩散具有明显的各向异性,沿a(b)轴方向的扩散更快;文石呈现中等的各向异性,沿c轴的扩散速率低于a轴。在高压条件下,文石的激活能随压力的增大而增大。方解石晶体在[010]方向的封闭温度为–54~–25 ℃,沿[100]方向的封闭温度为 –12~23 ℃。在地表条件下,氦在文石中的滞留能力比在方解石中强,与以往的实验研究结果一致。

     

  • Figure  1.  Schematic diagrams showing unit cell of calcite ((a) and (b)) and aragonite ((c) and (d)) (The two structures both show layers of Ca2+ cations and layers of planar CO3 groups stacked perpendicular to the c-axis. Green: Ca, red: O, gray: C.)

    Figure  2.  Diffusion pathways of helium atom in calcite along [010] (a) and [001] via the S1′ site and reaching the S3 site (b); in aragonite along [100] (c) and [001] via the S1′ site and reaching the S1″ site (d)

    Figure  3.  Energy barriers of different paths for helium diffusion in calcite: (a) ${S_1^{\rm Cal}- S_2^{\rm Cal}}$ path in the [010] direction, (b) ${S_1^{\rm Cal}- S_{1'}^{\rm Cal}-S_3^{\rm Cal}}$ path in the [001] direction; in aragonite: (c) ${S_1^{\rm Arg}- S_2^{\rm Arg}}$ path in the [100] direction, (d) ${S_1^{\rm Arg}- S_{1'}^{\rm Arg}-S_{1''}^{\rm Arg}}$ path in the [001] direction

    Figure  4.  Comparisons of our Arrhenius relations for calcite (a) and aragonite (b) with the data of Cherniak et al.[4] (He diffusion in calcite displays marked anisotropy, while in aragonite shows moderate anisotropy.)

    Figure  5.  Effect of pressure on helium diffusion in aragonite up to 14 GPa in the [100] (a) and [001] (b) directions (The diffusion coefficients obviously decrease with pressure increasing in both directions.)

    Figure  6.  Calculated closure temperature (Tc) as a function of grain radius (a) along different directions in calcite and aragonite (Closure temperature are plotted for assuming spherical geometry (A=55) of the crystals. Helium in each carbonate composition using Dodson’s (1973) equation and a cooling rate of 10 ℃/Ma.)

    Table  1.   Calculated structural parameters of calcite and aragonite in comparison with previous theoretical and experimental values

    MineralData sourceUnit cell volume/nm3a/nmb/nmc/nmC-O bond distance/nmCa-O bond distance/nm
    Calcite This work 379.58 5.05 17.21 1.299 2.383
    Calculation[22] 383.20 5.05 17.33 1.291 2.397
    Experiment[23] 368.10 4.99 17.06 1.284 2.359
    Aragonite This work 232.58 5.01 8.01 5.79 1.291 2.469
    Calculation[24] 233.84 5.02 8.04 5.80 1.292 2.440
    Experiment[25] 226.65 4.96 7.96 5.74 1.284 2.414
    下载: 导出CSV

    Table  2.   Calculated parameters for helium diffusion in calcite and aragonite under ambient and high pressures

    Mineral Pressure/GPa Direction Ea/(kJ·mol–1) v/THz l/nm D0/(m2·s–1)
    Calcite 0 [010] 67.64 4.29 5.05 5.46×10–7
    0 [001] 97.36 4.19 4.71 4.65×10–7
    0 [100] 82.40 7.71 5.00 9.64×10–7
    0 [001] 96.00 6.34 5.79 1.06×10–6
    3 [100] 110.57 7.11 4.98 8.82×10–7
    3 [001] 125.43 6.57 5.68 1.06×10–6
    Aragonite 6 [100] 115.78 7.03 4.95 8.61×10–7
    6 [001] 133.63 6.85 5.85 1.17×10–6
    10 [100] 139.42 7.54 4.90 9.05×10–7
    10 [001] 160.17 7.56 5.47 1.13×10–6
    14 [100] 154.38 7.01 4.86 8.28×10–7
    14 [001] 174.45 8.41 5.36 1.21×10–6
    下载: 导出CSV

    Table  3.   Summary of the characteristic bond distances of activated states in calcite and aragonite under different pressure conditions (All bond distances are the smallest distances.)

    MineralPressure/GPaDirectionCa-O bond distance/nmC-O bond distance/nmHe-O bond distance/nm
    Calcite 0[010]2.2611.2992.033
    0[001]2.2411.2951.922
    0[100]2.3561.2962.141
    0[001]2.4121.2872.042
    3[100]2.3581.2942.067
    3[001]2.3791.2942.002
    Aragonite 6[100]2.3511.2892.026
    6[001]2.3171.2841.970
    10[100]2.3401.2781.982
    10[001]2.2901.2741.927
    14[100]2.3341.2771.951
    14[001]2.2651.2701.909
    下载: 导出CSV
  • [1] CHERNIAK D J, WATSON E B, THOMAS J B. Diffusion of helium in zircon and apatite [J]. Chemical Geology, 2009, 268(1): 155–166.
    [2] REICH M, EWING R C, EHLERS T A, et al. Low-temperature anisotropic diffusion of helium in zircon: implications for zircon (U–Th)/He thermochronometry [J]. Geochimica et Cosmochimica Acta, 2007, 71(12): 3119–3130. doi: 10.1016/j.gca.2007.03.033
    [3] REINERS P W. Zircon (U-Th)/He thermochronometry [J]. Reviews in Mineralogy Geochemistry, 2005, 58(1): 151–179. doi: 10.2138/rmg.2005.58.6
    [4] CHERNIAK D J, AMIDON W, HOBBS D, et al. Diffusion of helium in carbonates: effects of mineral structure and composition [J]. Geochimica et Cosmochimica Acta, 2015, 165: 449–465. doi: 10.1016/j.gca.2015.06.033
    [5] COPELAND P, WATSON E B, URIZAR S C, et al. Alpha thermochronology of carbonates [J]. Geochimica et Cosmochimica Acta, 2007, 71(18): 4488–4511. doi: 10.1016/j.gca.2007.07.004
    [6] COPELAND P, COX K, WATSON E B. The potential of crinoids as (U+Th+Sm) /He thermochronometers [J]. Earth and Planetary Science Letters, 2015, 42: 1–10.
    [7] CROS A, GAUTHERON C, PAGEL M, et al. 4He behavior in calcite filling viewed by (U-Th)/He dating, 4He diffusion and crystallographic studies [J]. Geochimica et Cosmochimica Acta, 2014, 125: 414–432. doi: 10.1016/j.gca.2013.09.038
    [8] AMIDON W H, HOBBS D, HYNEK S A, et al. Retention of cosmogenic 3He in calcite [J]. Quaternary Geochronology, 2015, 27: 172–184. doi: 10.1016/j.quageo.2015.03.004
    [9] BENGTSON A, EWING R C, BECKER U. He diffusion and closure temperatures in apatite and zircon: a density functional theory investigation [J]. Geochimica et Cosmochimica Acta, 2012, 86: 228–238. doi: 10.1016/j.gca.2012.03.004
    [10] WANG K, BRODHOLT J, LU X. Helium diffusion in olivine based on first principles calculations [J]. Geochimica et Cosmochimica Acta, 2015, 156: 145–153. doi: 10.1016/j.gca.2015.01.023
    [11] BALOUT H, ROQUES J, GAUTHERON C, et al. Helium diffusion in pure hematite (α-Fe3O3) for thermochronometric applications: a theoretical multi-scale study [J]. Computational and Theoretical Chemistry, 2017, 1099: 21–28. doi: 10.1016/j.comptc.2016.11.001
    [12] SONG Z, WU H, SHU S, et al. A first-principles and experimental study of helium diffusion in periclase MgO [J]. Physics and Chemistry of Minerals, 2018, 45(7): 641–654. doi: 10.1007/s00269-018-0949-y
    [13] DODSON M H. Closure temperatures in cooling geological and petrological systems [J]. Contributions to Mineralogy Petrology, 1973, 40(3): 259–274. doi: 10.1007/BF00373790
    [14] HOHENBERG P, KOHN W. Inhomogenous electron gas [J]. Physical Review, 1964, 136: 864–871. doi: 10.1103/PhysRev.136.B864
    [15] KOHN W, SHAM L J. Quantum density oscillations in an inhomogeneous electron gas [J]. Physical Review, 1965, 137: 1697–1705. doi: 10.1103/PhysRev.137.A1697
    [16] KRESSE G, FURTHMULLER J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set [J]. Computational Materials Science, 1996, 6(1): 15–50. doi: 10.1016/0927-0256(96)00008-0
    [17] KRESSE G, HAFNER J. Ab initio molecular dynamics for liquid-metals [J]. Physical Review B, 1993, 47(1): 558–561. doi: 10.1103/PhysRevB.47.558
    [18] BLÖCHL P E. Projected augmented-wave method [J]. Physical Review B, 1996, 50(24): 17953–17979.
    [19] KRESSE G, JOUBERT D. From ultrasoft pseudopotentials to the projector augmented-wave method [J]. Physical Review B, 1999, 59(3): 1758–1775. doi: 10.1103/PhysRevB.59.1758
    [20] PERDEW J P, BURKE K, ERNZERHOF M. Generalized gradient approximation made simple [J]. Physical Review Letters, 1996, 77(18): 3865–3868. doi: 10.1103/PhysRevLett.77.3865
    [21] CHADI D J. Special points for Brillouin-zone integrations [J]. Physical Review B, 1977, 16(4): 1746–1747. doi: 10.1103/PhysRevB.16.1746
    [22] BRIK M G. First-principles calculations of structural, electronic, optical and elastic properties of magnesite MgCO3 and calcite CaCO3 [J]. Physica B: Condensed Matter, 2011, 406(4): 1004–1012. doi: 10.1016/j.physb.2010.12.049
    [23] MALSEN E N, STRELTSOV V A, STRELTSOVA N R, et al. X-ray study of the electron density in calcite, CaCO3 [J]. Acta Crystallographica Section B: Structural Science, 1993, 49(4): 636–641. doi: 10.1107/S0108768193002575
    [24] OGANOV A R, GLASS C W, ONO S. High-pressure phases of CaCO3: crystal structure prediction and experiment [J]. Earth and Planetary Science Letters, 2006, 241(1): 95–103.
    [25] DICKENS B, BOWEN J S. Refinement of the crystal of the aragonite phase of CaCO3 [J]. Physics and Chemistry A, 1971, 75(1): 27–32.
    [26] HENKELMAN G. Improved tangent estimate in the nudged elastic band method for finding minimum energy paths and saddle points [J]. Journal of Chemical Physics, 2000, 113(22): 9978–9985. doi: 10.1063/1.1323224
    [27] VINEYARD G H. Frequency factors and isotope effects in solid state rate processes [J]. Journal of Physics and Chemistry of Solids, 1957, 3(1/2): 121–127.
    [28] BENDER M L. Helium-uranium dating of corals [J]. Geochimica et Cosmochimica Acta, 1973, 37(5): 1229–1247. doi: 10.1016/0016-7037(73)90058-6
  • 加载中
图(6) / 表(3)
计量
  • 文章访问数:  8137
  • HTML全文浏览量:  3495
  • PDF下载量:  36
出版历程
  • 收稿日期:  2018-12-12
  • 修回日期:  2019-01-03

目录

    /

    返回文章
    返回