冲击载荷下Al2O3陶瓷的失效与破碎特性

孙晓波 高玉波 徐鹏

孙晓波, 高玉波, 徐鹏. 冲击载荷下Al2O3陶瓷的失效与破碎特性[J]. 高压物理学报, 2019, 33(5): 054202. doi: 10.11858/gywlxb.20180695
引用本文: 孙晓波, 高玉波, 徐鹏. 冲击载荷下Al2O3陶瓷的失效与破碎特性[J]. 高压物理学报, 2019, 33(5): 054202. doi: 10.11858/gywlxb.20180695
SUN Xiaobo, GAO Yubo, XU Peng. Failure and Fracture Characteristics of Al2O3 Ceramics under Impact Loading[J]. Chinese Journal of High Pressure Physics, 2019, 33(5): 054202. doi: 10.11858/gywlxb.20180695
Citation: SUN Xiaobo, GAO Yubo, XU Peng. Failure and Fracture Characteristics of Al2O3 Ceramics under Impact Loading[J]. Chinese Journal of High Pressure Physics, 2019, 33(5): 054202. doi: 10.11858/gywlxb.20180695

冲击载荷下Al2O3陶瓷的失效与破碎特性

doi: 10.11858/gywlxb.20180695
基金项目: 国家自然科学基金(11702257)
详细信息
    作者简介:

    孙晓波(1994-),男,硕士研究生,主要从事陶瓷颗粒的抗侵彻机理研究. E-mail:1448938878@qq.com

    通讯作者:

    徐 鹏(1969-),男,博士,教授,主要从事爆炸与冲击动力学研究. E-mail:xptjl972@163.com

  • 中图分类号: O347.3

Failure and Fracture Characteristics of Al2O3 Ceramics under Impact Loading

  • 摘要: 作为典型的脆性材料,陶瓷对变形具有高度敏感性,在强动载荷下具有完全不同于延性金属材料的损伤、破坏行为等力学响应特性。采用分离式霍普金森杆测试系统对Al2O3陶瓷进行了冲击加载试验,获得了陶瓷的动态抗拉/压力学性能,以及材料破碎特性随应变率的变化关系。利用能量守恒和动力学的理论方法,对脆性陶瓷材料在不同应变率下的力学特性和碎片尺度进行了深入研究。结果表明:在冲击载荷作用下,Al2O3陶瓷的抗拉和抗压强度均与应变率呈正相关。Al2O3陶瓷试样在一维应力波作用下的破碎颗粒尺寸差异较大,随着加载应变率的增加,破碎的陶瓷颗粒总数增大,颗粒平均粒径减小,应力集中的影响逐渐减弱。采用DID模型模拟的脆性材料碎片尺度与实验结果比较吻合,Grady模型源于韧性材料的推广,与实验结果的偏差较大。

     

  • 图  改进的分离式霍普金森压杆

    Figure  1.  Schematic of modified split Hopkinson pressure bar

    图  巴西圆盘试样设计

    Figure  2.  Design of the Brazilian disc sample

    图  动态压缩实验的典型信号

    Figure  3.  Typical signal of dynamic compression experiments

    图  应力-应变曲线

    Figure  4.  Stress-strain curves

    图  动态加载下Al2O3的破坏模式((a)和(b)的试样尺寸为$\varnothing$10 mm×8 mm[12];(c)和(d)的试样尺寸为$\varnothing$5.5 mm×11.0 mm)

    Figure  5.  Fractured mode of Al2O3 ceramic under dynamic tests ((a) and (b): specimen size $ \varnothing$10 mm×8 mm[12]; (c) and (d): specimen size $\varnothing$5.5 mm×11.0 mm)

    图  Al2O3陶瓷不同应变率下动态抗压/拉强度

    Figure  6.  Dynamic compressive and tensile strength of Al2O3 ceramic under different strain rate

    图  动态巴西圆盘试样破坏模式

    Figure  7.  Fractured mode of dynamic Brazilian disc tests

    图  动态巴西圆盘实验典型信号

    Figure  8.  Typical signal of dynamic Brazilian disc tests

    图  应变率-应变曲线

    Figure  9.  Strain rate-strain curve

    图  10  陶瓷压缩碎片

    Figure  10.  Ceramic compression fragment

    图  11  理论模型与实际碎片尺寸对比

    Figure  11.  Comparison between theoretical model and actual debris size

    表  1  不同应变率下Al2O3陶瓷破碎颗粒尺寸

    Table  1.   Particle size of fractured Al2O3 ceramic under different strain rates

    Grain size/${\text{μ}}{\rm m}$Particle number
    238 s–1300 s–1364 s–1417 s–1600 s–1734 s–1
    <300571 521 568 689 816 970
    300–500234 236 248 249 265 188
    500–1000 38 71 88 74 151 127
    1000–1500 69 146 115 99 80 39
    >1500 34 28 29 23 22 31
    Total particle number94610021048113413341355
    Average diameter/mm344 335 330 323 318 299
    下载: 导出CSV

    表  2  Al2O3陶瓷参数[20]

    Table  2.   Parameters of Al2O3 ceramic[20]

    $ \rho $/(g·cm–3E/GPac/(m·s–1)Gc/(N·m–1)
    3.869290865830
    下载: 导出CSV

    表  3  抗拉/压强度随应变率的变化

    Table  3.   Tensile strength varies with strain rates

    TensileCompression
    $\dot \varepsilon$/s–1$ {\sigma _{\rm{t}}}$/GPa$\dot \varepsilon$/s–1$ {\sigma _{\rm{c}}}$/GPa${\dot \varepsilon _0}$/s–1
    1780.1272383.258820
    2120.1353003.288902
    2480.1463643.349072
    3070.1554173.419282
    3400.1656003.499716
    3920.1787343.589934
    下载: 导出CSV
  • [1] WEI G, ZHANG W. Deformation and fracture behavior of steel projectiles impacting AD95 ceramic targets-experimental investigation [J]. Journal of Physics: Conference Series, 2014, 500(11): 112065. doi: 10.1088/1742-6596/500/11/112065
    [2] GILVARRY J J, BERGSTROM B H. Fracture of brittle solids. III. experimental results on the distribution of fragment size in single fracture [J]. Journal of Applied Physics, 1962, 33(11): 3211–3213. doi: 10.1063/1.1931139
    [3] WANG Z, LI P. Dynamic failure and fracture mechanism in alumina ceramics: experimental observations and finite element modelling [J]. Ceramics International, 2015, 41(10): 12763–12772. doi: 10.1016/j.ceramint.2015.06.110
    [4] SELLAPPAN P, WANG E, SANTOS C J E, et al. Wave propagation through alumina-porous alumina laminates [J]. Journal of the European Ceramic Society, 2015, 35(1): 197–210. doi: 10.1016/j.jeurceramsoc.2014.08.013
    [5] DENG H, NEMAT-NASSER S. Dynamic damage evolution in brittle solids [J]. Mechanics of Materials, 1992, 14(2): 83–103. doi: 10.1016/0167-6636(92)90008-2
    [6] ACHARYA S, BYSAKH S, PARAMESWARAN V, et al. Deformation and failure of alumina under high strain rate compressive loading [J]. Ceramics International, 2015, 41(5): 6793–6801. doi: 10.1016/j.ceramint.2015.01.126
    [7] 易洪昇, 徐松林, 单俊芳. 不同加载速度下脆性颗粒的破坏特征 [J]. 爆炸与冲击, 2017, 37(5): 913–922. doi: 10.11883/1001-1455(2017)05-0913-10

    YI H S, XU S L, SHAN J F. Failure characteristics of brittle particles at different loading speeds [J]. Explosion and Shock Waves, 2017, 37(5): 913–922. doi: 10.11883/1001-1455(2017)05-0913-10
    [8] GRADY D E, BENSON D A. Fragmentation of metal rings by electromagnetic loading [J]. Experimental Mechanics, 1983, 23(4): 393–400. doi: 10.1007/BF02330054
    [9] 周风华, 王永刚. 影响冲击载荷下脆性材料碎片尺度的因素 [J]. 爆炸与冲击, 2008, 28(4): 298–303. doi: 10.3321/j.issn:1001-1455.2008.04.003

    ZHOU F H, WANG Y G. Factors affecting the size of brittle material fragments under impact loading [J]. Explosion and Shock Waves, 2008, 28(4): 298–303. doi: 10.3321/j.issn:1001-1455.2008.04.003
    [10] WANG H, RAMESH K T. Dynamic strength and fragmentation of hot-pressed silicon carbide under uniaxial compression [J]. Acta Materialia, 2004, 52(2): 355–367. doi: 10.1016/j.actamat.2003.09.036
    [11] 段卓平, 关智勇. 冲击载荷下Al2O3抗弹陶瓷的力学性能实验研究 [J]. 高压物理学报, 2003, 17(1): 29–34. doi: 10.3969/j.issn.1000-5773.2003.01.005

    DUAN Z P, GUAN Z Y. Experimental study on mechanical properties of elastics ceramics under impact loading [J]. Chinese Journal of High Pressure Physics, 2003, 17(1): 29–34. doi: 10.3969/j.issn.1000-5773.2003.01.005
    [12] 李英雷, 胡时胜, 李英华. AD95陶瓷材料的动态压缩测试研究 [J]. 爆炸与冲击, 2004, 24(3): 233–239. doi: 10.3321/j.issn:1001-1455.2004.03.007

    LI Y L, HU S S, LI Y H. Dynamic compression test of AD95 Ceramic materials [J]. Explosion and Shock Waves, 2004, 24(3): 233–239. doi: 10.3321/j.issn:1001-1455.2004.03.007
    [13] 杨震琦, 庞宝君, 王立闻. JH-2模型及其在Al2O3陶瓷低速撞击数值模拟中的应用 [J]. 爆炸与冲击, 2010, 30(5): 463–471. doi: 10.11883/1001-1455(2010)05-0463-09

    YANG Z Q, PANG B J, WANG L W. JH-2 model and its application in low speed impact simulation of Al2O3 ceramics [J]. Explosion and Shock Waves, 2010, 30(5): 463–471. doi: 10.11883/1001-1455(2010)05-0463-09
    [14] 王振, 张超, 王银茂. 飞机风挡无机玻璃在不同应变率下的力学行为 [J]. 爆炸与冲击, 2018, 38(2): 295–301. doi: 10.11883/bzycj-2016-0186

    WANG Z, ZHANG C, WANG Y M. Mechanical behavior of aircraft windshield inorganic glass under different strain rates [J]. Explosion and Shock Waves, 2018, 38(2): 295–301. doi: 10.11883/bzycj-2016-0186
    [15] 罗诗裕, 邵明珠, 罗晓华. 正弦平方势与应变超晶格位错动力学 [J]. 中国科学: 物理学力学天文学, 2010(2): 207–212.

    LUO S Y, SHAO M Z, LUO X H. Sinusoidal squared potential and strain superlattice dislocation dynamics [J]. Chinese Science: Physics, Mechanics, Astronomy, 2010(2): 207–212.
    [16] GRADY D E, KIPP M E. Mechanisms of dynamic fragmentation: factors governing fragment size [J]. Mechanics of Materials, 1985, 4(3/4): 311–320.
    [17] GLENN L A, CHUDNOVSKY A. Strain-energy effects on dynamic fragmentation [J]. Journal of Applied Physics, 1986, 59(4): 1379–1380. doi: 10.1063/1.336532
    [18] ZHOU F, MOLINARI J F, RAMESH K T. Effects of material properties on the fragmentation of brittle materials [J]. International Journal of Fracture, 2006, 139(2): 169–196. doi: 10.1007/s10704-006-7135-9
    [19] DRUGAN W J. Dynamic fragmentation of brittle materials: analytical mechanics-based models [J]. Journal of the Mechanics and Physics of Solids, 2001, 49(6): 1181–1208. doi: 10.1016/S0022-5096(01)00002-3
    [20] 程靳, 赵树山. 断裂力学[M]. 北京: 科学出版社, 2006: 152–163.

    CHENG J, ZHAO S S. Mechanics of fracture [M]. Beijing: Science Press, 2006: 152–163.
  • 加载中
图(11) / 表(3)
计量
  • 文章访问数:  7801
  • HTML全文浏览量:  4052
  • PDF下载量:  51
出版历程
  • 收稿日期:  2018-12-03
  • 修回日期:  2019-01-03
  • 发布日期:  2019-07-25

目录

    /

    返回文章
    返回