锥头弹体攻角贯穿薄钢靶数值模拟

潘鑫 王浩 武海军 皮爱国 李金柱

潘鑫, 王浩, 武海军, 皮爱国, 李金柱. 锥头弹体攻角贯穿薄钢靶数值模拟[J]. 高压物理学报, 2019, 33(4): 045106. doi: 10.11858/gywlxb.20180691
引用本文: 潘鑫, 王浩, 武海军, 皮爱国, 李金柱. 锥头弹体攻角贯穿薄钢靶数值模拟[J]. 高压物理学报, 2019, 33(4): 045106. doi: 10.11858/gywlxb.20180691
PAN Xin, WANG Hao, WU Haijun, PI Aiguo, LI Jinzhu. Numerical Simulation of Thin Steel Target Perforated by Conical-Nosed Projectile with Yaw Angle[J]. Chinese Journal of High Pressure Physics, 2019, 33(4): 045106. doi: 10.11858/gywlxb.20180691
Citation: PAN Xin, WANG Hao, WU Haijun, PI Aiguo, LI Jinzhu. Numerical Simulation of Thin Steel Target Perforated by Conical-Nosed Projectile with Yaw Angle[J]. Chinese Journal of High Pressure Physics, 2019, 33(4): 045106. doi: 10.11858/gywlxb.20180691

锥头弹体攻角贯穿薄钢靶数值模拟

doi: 10.11858/gywlxb.20180691
基金项目: 国防基础科研项目(2016209A003,2016602B003)
详细信息
    作者简介:

    潘 鑫(1994-),男,硕士研究生,主要从事材料与结构冲击动力学研究. E-mail:panxin_mm@foxmail.com

    通讯作者:

    武海军(1974-),男,博士,教授,主要从事爆炸与冲击动力学研究. E-mail:wuhj@bit.edu.cn

  • 中图分类号: O385

Numerical Simulation of Thin Steel Target Perforated by Conical-Nosed Projectile with Yaw Angle

  • 摘要: 为了研究攻角对锥头弹体贯穿薄钢靶破坏模式和弹体偏转的影响,利用ANSYS/LS-DYNA有限元软件建立了锥头弹体以2°~10°攻角贯穿薄钢靶的模型。先验证了模型及参数的可靠性,在此基础上进行了锥头弹体在不同攻角和初始速度条件下的贯穿数值模拟。结合靶板的破坏与弹体的偏转过程提出了一种四阶段分析模型,并系统地研究了攻角对弹道和弹体偏转角变化规律的影响。结果表明:攻角贯穿薄钢靶失效模式为非对称花瓣形破坏;攻角越大,初始速度越小(大于弹道极限速度),弹道偏转越明显;弹体偏转角变化规律与初始速度范围相关,当初始速度高于1.4倍弹道极限时,弹体偏转角呈现先增大后减小的变化趋势;弹体出靶时刻的角速度随攻角的增大而增大,随着初始速度的增加先反向增大后减小。

     

  • 图  弹体着靶姿态

    Figure  1.  Projectile body attitude

    图  弹靶有限元模型

    Figure  2.  Finite element model of the target and projectile

    图  弹道极限曲线

    Figure  3.  Ballistic limit curve

    图  网格敏感性分析结果

    Figure  4.  Results of mesh sensitivity analysis

    图  靶板的花瓣形破坏

    Figure  5.  Petalling failure of the target

    图  弹体攻角贯穿靶板典型过程($\alpha $=6°)

    Figure  6.  Typical perforation process of the projectile with yaw angle ($\alpha $=6°)

    图  不同攻角下靶板的破坏形貌

    Figure  7.  Damage morphology of the target at different yaw angles

    图  不同攻角下的弹道极限速度

    Figure  8.  Ballistic limit velocity at different yaw angles

    图  不同攻角下的剩余速度曲线

    Figure  9.  Resultant velocity of different yaw angles

    图  10  2°和10°攻角下不同初始速度弹体的偏转角变化历程

    Figure  10.  Deflection angle histories of the projectile at different initial velocities and yaw angels of 2° and 10°

    图  11  不同攻角、速度为80.40 m/s和180.37 m/s时弹体偏转角变化历程

    Figure  11.  Deflection angle histories of the projectile at different yaw angels and initial velocities of 80.40 m/s and 180.37 m/s

    图  12  贯穿过程的第Ⅲ阶段示意图

    Figure  12.  Perforation process of the 3rd phase diagram

    图  13  贯穿过程的第Ⅳ阶段示意图

    Figure  13.  Perforation process of the 4th phase diagram

    图  14  10°攻角下不同初始速度下弹体角速度变化历程

    Figure  14.  Angular velocity histories of the projectile at 10° yaw angel and different initial velocities

    图  15  不同初始速度下弹体出靶时刻角速度

    Figure  15.  Angular velocity of the projectile at different initial velocities after through target

    图  16  2°和10°攻角下不同初始速度弹体的质心偏转轨迹

    Figure  16.  Projectile centroid trajectory at different initial velocities and yaw angels of 2° and 10°

    图  17  不同攻角下初始速度为80.40 m/s和180.37 m/s时弹体的质心偏转轨迹

    Figure  17.  Projectile centroid trajectory at different yaw angels and initial velocities of 80.40 m/s and 180.37 m/s

    表  1  靶板材料模型参数[13]

    Table  1.   Material parameters for steel target[13]

    A/MPaB/MPanc${\dot \varepsilon _0}$/s–1Tr/KTmelt/K
    1544640.370.020.00013001600
    mD1D2D3D4D5$\chi $
    0.71.200000.9
    $\rho $/(g·cm–3)C0/(m·s–1)S1${\gamma _0}$$a$cp/(J·kg–1· K–1)
    7.8045781.331.670.47470
    下载: 导出CSV

    表  2  弹体正撞击靶板的初始与剩余速度

    Table  2.   Initial and residual velocities of the projectile impacting target vertically

    vi/(m·s–1)vr/(m·s–1)
    Experiment results[13]Simulation results
    72.32 0.43 6.81
    80.40 37.09 42.28
    100.84 67.13 75.84
    121.22 92.37101.26
    141.67118.10124.77
    180.37156.24160.99
    下载: 导出CSV

    表  3  模型参数及弹道极限

    Table  3.   Model parameters and ballistic limits

    Methodaqvbl/(m·s–1)
    Experiment1.001.9572.85
    Numerical simulation1.002.2072.13
    下载: 导出CSV
  • [1] BACKMAN M E, GOLDSMITH W. The mechanics of penetration of projectiles into targets [J]. International Journal of Engineering Science, 1978, 16(1): 1–99. doi: 10.1016/0020-7225(78)90002-2
    [2] CORBETT G G, REID S R, JOHNSON W. Impact loading of plates and shells by free-flying projectiles: a review [J]. International Journal of Impact Engineering, 1996, 18(2): 141–230. doi: 10.1016/0734-743X(95)00023-4
    [3] ZUKAS J A. Impact dynamics [M].New York:Wiley,1982.
    [4] ANDERSON C E JR, BODNER S R. Ballistic impact: the status of analytical and numerical modeling [J]. International Journal of Impact Engineering, 1988, 7(1): 9–35. doi: 10.1016/0734-743X(88)90010-3
    [5] 钱伟长. 穿甲力学 [M]. 北京: 国防工业出版社, 1984.

    QIAN W C. Mechanics of perforation [M]. Beijing: National Defense Industry Press, 1984.
    [6] GOLDSMITH W. Non-ideal projectile impact on targets [J]. International Journal of Impact Engineering, 1999, 22(2/3): 95–395.
    [7] DENG Y F, LI J F, JIA B H, et al. Numerical study of failure modes and crack propagation in 2A12 aluminum target against blunt-nosed projectile at low yaw angle [J]. Strength of Materials, 2016, 48(6): 834–849. doi: 10.1007/s11223-017-9830-3
    [8] 徐双喜, 吴卫国, 李晓彬, 等. 锥头弹小斜角侵彻薄板剩余速度理论分析 [J]. 弹道学报, 2010, 22(3): 58–62.

    XU S X, WU W G, LI X B, et al. Theoretical analysis on residual velocity of conical projectile after penetrating thin plate at low oblique angle [J]. Journal of Ballistics, 2010, 22(3): 58–62.
    [9] 熊飞, 石全, 张成, 等. 不同头部形状半穿甲战斗部侵彻薄钢板数值模拟 [J]. 弹箭与制导学报, 2015(1): 55–58.

    XIONG F, SHI Q, ZHANG C, et al. Numerical simulation on the semi-armor-piercing warhead with different nose shapes penetrating thin steel target [J]. Journal of Projectiles, Rockets, Missile and Guidance, 2015(1): 55–58.
    [10] 董三强, 蔡星会, 王国亮, 等. 攻角对半穿甲战斗部侵彻航母双层靶板的效应研究 [J]. 舰船科学技术, 2017(21): 37–41.

    DONG S Q, CAI X H, WANG G L, et al. Numerical simulation research on effect of warhead penetrating double-layer aircraft carrier targets [J]. Ship Science and Technology, 2017(21): 37–41.
    [11] 侯旷怡, 李可达, 张新伟. 着靶姿态对半穿甲战斗部穿甲过程的影响 [J]. 兵器装备工程学报, 2017(4): 65–68.

    HOU K Y, LI K D, ZHANG X W. Influence of hitting attitude in armor-piercing process [J]. Journal of Ordnance Equipment Engineering, 2017(4): 65–68.
    [12] 邓云飞, 袁家俊. 攻角对卵形头弹撞击铝合金薄板影响的数值研究 [J]. 高压物理学报, 2018, 32(4): 045102. doi: 10.11858/gywlxb.20170601

    DENG Y F, YUAN J J. Numerical research of influence of attack angle on thin aluminum alloy plate impacted by ogival-nosed projectile [J]. Chinese Journal of High Pressure Physics, 2018, 32(4): 045102. doi: 10.11858/gywlxb.20170601
    [13] KPENYIGBA K M, JANKOWIAK T, RUSINEK A, et al. Influence of projectile shape on dynamic behavior of steel sheet subjected to impact and perforation [J]. Thin-Walled Structures, 2013, 65: 93–104. doi: 10.1016/j.tws.2013.01.003
    [14] RECHT R F, IPSON T W. Ballistic perforation dynamics [J]. Journal of Applied Mechanics, 1963, 30(3): 384. doi: 10.1115/1.3636566
  • 加载中
图(17) / 表(3)
计量
  • 文章访问数:  5580
  • HTML全文浏览量:  2716
  • PDF下载量:  28
出版历程
  • 收稿日期:  2018-11-18
  • 修回日期:  2019-01-08

目录

    /

    返回文章
    返回