金刚石荧光机制的研究及其对高压拉曼光谱测试的意义

刘云贵 吕政星 宋海鹏 巫翔

刘云贵, 吕政星, 宋海鹏, 巫翔. 金刚石荧光机制的研究及其对高压拉曼光谱测试的意义[J]. 高压物理学报, 2019, 33(4): 043101. doi: 10.11858/gywlxb.20180689
引用本文: 刘云贵, 吕政星, 宋海鹏, 巫翔. 金刚石荧光机制的研究及其对高压拉曼光谱测试的意义[J]. 高压物理学报, 2019, 33(4): 043101. doi: 10.11858/gywlxb.20180689
LIU Yungui, LÜ Zhengxing, SONG Haipeng, WU Xiang. Fluorescence Mechanism of Diamond and the Significance in High Pressure Raman Spectrometry[J]. Chinese Journal of High Pressure Physics, 2019, 33(4): 043101. doi: 10.11858/gywlxb.20180689
Citation: LIU Yungui, LÜ Zhengxing, SONG Haipeng, WU Xiang. Fluorescence Mechanism of Diamond and the Significance in High Pressure Raman Spectrometry[J]. Chinese Journal of High Pressure Physics, 2019, 33(4): 043101. doi: 10.11858/gywlxb.20180689

金刚石荧光机制的研究及其对高压拉曼光谱测试的意义

doi: 10.11858/gywlxb.20180689
基金项目: 国家自然科学基金(41473056,41827802)
详细信息
    作者简介:

    刘云贵(1986-),男,硕士,讲师,主要从事高压矿物物理研究. E-mail: liuyungui@hgu.edu.cn

    通讯作者:

    巫 翔(1978-),男,博士,教授,主要从事地球深部物质的组成、状态和物性研究. E-mail: wuxiang@cug.edu.cn

  • 中图分类号: O521.3

Fluorescence Mechanism of Diamond and the Significance in High Pressure Raman Spectrometry

  • 摘要: 基于金刚石压腔技术的高压拉曼散射光谱在高压科学的前沿研究中发挥重要作用,金刚石压砧的荧光效应影响测试样品的拉曼散射光谱信噪比。采用激光拉曼光谱仪,对202粒宝石级金刚石进行光致发光研究,确定了N3、H3和NV0中心等光学缺陷中心的存在,发现其浓度控制零声子线及荧光发射谱的强度,与金刚石荧光强度呈正相关。金刚石的二阶拉曼位移峰(约2664 cm–1)两侧基线强度比值与荧光强度呈负相关,利用该比值可准确判断金刚石荧光的强弱。此外,金刚石中光学缺陷中心浓度的不均匀性普遍存在,多点测试综合分析能提供更全面的荧光信息。研究结果可为高压拉曼测试时金刚石压砧的选择提供有效的理论和实践依据。

     

  • 图  天然硬水铝石在2.2 GPa下的拉曼光谱(a)以及所用金刚石压砧的原位二阶拉曼光谱(b)和光致发光光谱(c)(采用两套金刚石压腔在相同实验条件下完成测试,硬水铝石产于土耳其,分子式为Al0.98Cr0.02OOH)

    Figure  1.  (a) Raman spectra of nature diaspore at 2.2 GPa, (b) the in-situ second-order Raman spectra and (c) photoluminescence spectra of diamond anvils (Two sets of diamond anvil cells were used to accomplish the measurements under the same experimental condition. The diaspore is from Turkey and its molecular formula is Al0.98Cr0.02OOH.)

    图  金刚石的二阶拉曼光谱及对应的I值:(a)不同金刚石随机测试点的I值;(b)ND-3不同测试点的I值;(c)ND-7不同测试点的I

    Figure  2.  The second-order Raman spectra of diamond and the corresponding I value: (a) I value of different diamonds at a random point, (b) I value of ND-3 at different points, (c) I value of ND-7 at different points

    图  含N3缺陷中心金刚石随机测试点的光致发光光谱(a)及对应的原位二阶拉曼光谱(b)

    Figure  3.  Photoluminescence spectra (a) and the corresponding in-situ second-order Raman spectra (b) of diamonds with N3 defect centers at a random point

    图  室温和液氮温度下ND-3的光致发光光谱

    Figure  4.  Photoluminescence spectra of ND-3 at the room temperature and the liquid nitrogen temperature

    图  含H3缺陷中心金刚石随机测试点的光致发光光谱(a)及对应的原位二阶拉曼光谱(b)

    Figure  5.  Photoluminescence spectra (a) and the corresponding in-situ second-order Raman spectra (b) of diamonds with H3 defect centers at a random point

    图  含不同类型缺陷中心金刚石的红外光谱

    Figure  6.  IR spectra of diamonds with different types of defect centers

    图  金刚石缺陷中心及对应的荧光发射能量

    Figure  7.  A simplified model of the defect centers and their corresponding fluorescence emission energy in diamonds

  • [1] 李晓东, 李晖, 李鹏善. 同步辐射高压单晶衍射实验技术 [J]. 物理学报, 2017, 66(3): 136–148.
    [2] LI X D, LI H, LI P S. High pressure single-crystal synchrotron X-ray diffraction technique [J]. Acta Physica Sinica, 2017, 66(3): 136–148.
    [3] MAO H K, CHEN X J, DING Y, et al. Solids, liquids, and gases under high pressure [J]. Reviews of Modern Physics, 2018, 90(1): 015007. doi: 10.1103/RevModPhys.90.015007
    [4] DUBROVINSKY L, DUBROVINSKAIA N, PRAKAPENKA V B, et al. Implementation of micro-ball nanodiamond anvils for high-pressure studies above 6 Mbar [J]. Nature Communications, 2012, 3: 1163. doi: 10.1038/ncomms2160
    [5] TATENO S, HIROSE K, OHISHI Y, et al. The structure of iron earth’s inner core [J]. Science, 2010, 330(6002): 359–361. doi: 10.1126/science.1194662
    [6] WU X, LIN J F, KAERCHER P, et al. Seismic anisotropy of the D" layer induced by (001) deformation of post-perovskite [J]. Nature Communications, 2017, 8: 14669. doi: 10.1038/ncomms14669
    [7] OHTA K, KUWAYAMA Y, HIROSE K, et al. Experimental determination of the electrical resistivity iron at earth's core conditions [J]. Nature, 2016, 534(7605): 95–98. doi: 10.1038/nature17957
    [8] KONÔPKOVÁ Z, MCWILLIAM R S, GÓMEZ-PÉREZ N, et al. Direct measurement of thermal conductivity in solid iron at planetary core conditions [J]. Nature, 2016, 534(7605): 99–101. doi: 10.1038/nature18009
    [9] EATON-MAGAÑA S, BREEDING C M. An introduction to photoluminescence spectroscopy for diamond and its applications in gemology [J]. Gems & Gemology, 2016, 52(1): 2–17.
    [10] SHIGLEY J E, BREEDING C M. Optical defects in diamond a quick reference chart [J]. Gems & Gemology, 2013, 49(2): 107–111.
    [11] ASAMS D M, PAYNE S J. Laser-stimulated fluorescence of diamond [J]. Journal of the Chemical Society Faraday Transactions Molecular & Chemical Physics, 1974, 70(12): 1959–1966.
    [12] KUDRYAVTSEV O S, KHOMICH A A, SEDOV V S, et al. Fluorescence and Raman spectroscopy of doped nanodiamonds [J]. Journal of Applied Spectroscopy, 2018, 85(2): 295–299. doi: 10.1007/s10812-018-0647-z
    [13] BREEDING C M, SHIGLEY J E. The " type” classification system of diamonds and its importance in gemology [J]. Gems & Gemology, 2009, 45(2): 96–111.
    [14] DIERKER S B, ARONSON M C. Reduction of Raman scattering and fluorescence from anvils in high pressure Raman scattering [J]. Review of Scientific Instruments, 2018, 89(5): 053902. doi: 10.1063/1.5027722
    [15] HIRSCH K R, HOLZAPFEL W B. Diamond anvil high-pressure cell for Raman spectroscopy [J]. Review of Scientific Instruments, 1981, 52(1): 52–55. doi: 10.1063/1.1136445
    [16] EESLEY G L, LEVESON M D. Coherent, nonlinear two-phonon Raman spectra of diamond [J]. Optics Letters, 1978, 3(5): 178–180. doi: 10.1364/OL.3.000178
    [17] ENKOVICH P V, BRAZHKIN V V, LYAPIN S G, et al. Quantum effects in diamond isotopes at high pressures [J]. Physical Review B, 2016, 93(1): 014308. doi: 10.1103/PhysRevB.93.014308
    [18] SOLIN S A, RAMDAS A K. Raman spectrum of diamond [J]. Physical Review B, 1970, 1(4): 1687–1698. doi: 10.1103/PhysRevB.1.1687
    [19] KLEIN C A, HARTNETT T M, ROBINSON C J. Critical-point phonon frequencies of diamond [J]. Physical Review B, 1992, 45(22): 12854. doi: 10.1103/PhysRevB.45.12854
    [20] NISSUM M, SHABANOVA E, NIELSEN O F. The second-order Raman spectrum of 13C diamond: an introduction to vibrational spectroscopy of the solid state [J]. Journal of Chemical Education, 2000, 77(5): 633–637. doi: 10.1021/ed077p633
    [21] LUO Y, BREEDING C M. Fluorescence produced by optical defects in diamond: measurement, characterization, and challenges [J]. Gems & Gemology, 2013, 49(2): 82–97.
    [22] SOONTHORNTANTIKUL W, WANG W Y. Natural colorless type IIa diamond with bright red fluorescence [J]. Gems & Gemology, 2016, 52(2): 189–190.
  • 加载中
图(7)
计量
  • 文章访问数:  8982
  • HTML全文浏览量:  4667
  • PDF下载量:  111
出版历程
  • 收稿日期:  2018-11-14
  • 修回日期:  2018-12-05

目录

    /

    返回文章
    返回