不同炮孔间距对岩石爆炸裂纹扩展影响的数值分析

李洪伟 雷战 江向阳 刘伟 何志伟 章彬彬

李洪伟, 雷战, 江向阳, 刘伟, 何志伟, 章彬彬. 不同炮孔间距对岩石爆炸裂纹扩展影响的数值分析[J]. 高压物理学报, 2019, 33(4): 044103. doi: 10.11858/gywlxb.20180683
引用本文: 李洪伟, 雷战, 江向阳, 刘伟, 何志伟, 章彬彬. 不同炮孔间距对岩石爆炸裂纹扩展影响的数值分析[J]. 高压物理学报, 2019, 33(4): 044103. doi: 10.11858/gywlxb.20180683
LI Hongwei, LEI Zhan, JIANG Xiangyang, LIU Wei, HE Zhiwei, ZHANG Binbin. Numerical Analysis of Impact of Shot Hole Spacing on Crack Growth in Rock[J]. Chinese Journal of High Pressure Physics, 2019, 33(4): 044103. doi: 10.11858/gywlxb.20180683
Citation: LI Hongwei, LEI Zhan, JIANG Xiangyang, LIU Wei, HE Zhiwei, ZHANG Binbin. Numerical Analysis of Impact of Shot Hole Spacing on Crack Growth in Rock[J]. Chinese Journal of High Pressure Physics, 2019, 33(4): 044103. doi: 10.11858/gywlxb.20180683

不同炮孔间距对岩石爆炸裂纹扩展影响的数值分析

doi: 10.11858/gywlxb.20180683
基金项目: 国家自然科学基金(51404006);安徽省教育厅科学研究重大项目(KJ2015ZD18)
详细信息
    作者简介:

    李洪伟(1979-),男,硕士研究生,副教授,主要从事控制爆破技术研究. E-mail: 1227002529@qq.com

    通讯作者:

    雷 战(1996-),男,硕士研究生,主要从事岩石破碎理论与技术研究. E-mail: 15055403215@163.com

  • 中图分类号: 0346.1

Numerical Analysis of Impact of Shot Hole Spacing on Crack Growth in Rock

  • 摘要: 为实现对岩石的充分破碎,有效利用炸药能量,基于有限元分析软件ANSYS/LS-DYNA及流固耦合(ALE)算法,研究了不同炮孔间距对岩石(角岩)爆炸裂纹扩展的影响,同时将模拟结果应用在工程实践上加以验证。结果表明:随着两炮孔间距离的增大,单炮孔周围裂纹扩展更加充分,炮孔周围粉碎区增大,萌生的分支小裂纹逐渐减少,主裂纹增多。在两炮孔之间受到相邻炮孔爆炸应力波影响的区域,主裂纹发育扩展较为明显,且随着炮孔间距的增大,主裂纹相互贯通的位置越靠近两炮孔中心连线方向。工程实践表明:数值模拟结果与爆破工程效果具有较好的吻合性,将数值模拟结果用来指导爆破方案设计是可行的,能够为爆破工程提供重要的参考。

     

  • 图  计算模型

    Figure  1.  Calculation model

    图  L=40 cm时岩石裂纹扩展过程

    Figure  2.  Growth process of rock crack at L=40 cm

    图  L=60 cm时岩石裂纹扩展过程

    Figure  3.  Growth process of rock crack at L=60 cm

    图  L=80 cm时岩石裂纹扩展过程

    Figure  4.  Growth process of rock crack at L=80 cm

    图  不同孔间距下炮孔中心连线中点处x方向的压力曲线

    Figure  5.  Pressure curve in the x direction at the center of the connecting line of gun hole with different hole spacing

    图  起爆网路连接示意图

    Figure  6.  Schematic of detonating network

    图  爆破效果图

    Figure  7.  Blasting effect

    表  1  岩石参数[6]

    Table  1.   Material parameters of rock[6]

    ${\rho}$/(kg·m–3)E0/GPa${\mu}$${{\sigma _0}}$/MPaEtan/GPa${{\sigma _{\rm{c}}}}$/MPa${{\sigma _{{\rm{st}}}}}$/MPaC/s–1P
    270068.690.22875401505.62.633.96
    下载: 导出CSV

    表  2  炸药参数[10-12]

    Table  2.   Material parameters of explosive[10-12]

    ${\rho}$/(kg·m–3)D/(m·s–1)pCJ/GPaA/GPaB/GPaR1R2${\omega}$
    120040004.802140.0934.150.950.3
    下载: 导出CSV

    表  3  岩石裂隙扩展平均速度

    Table  3.   The average speed of rock crack extension

    Speed of rock crack extension/(m·s−1V/Cp
    L=40 cmL=60 cmL=80 cm
    2051(t=40 ${{\text{μ}}{\rm{s}}}$)2157(t=60 ${{\text{μ}}{\rm{s}}}$)2286(t=70 ${{\text{μ}}{\rm{s}}}$)0.39
    2197(t=70 ${{\text{μ}}{\rm{s}}}$)2083(t=120 ${{\text{μ}}{\rm{s}}}$)2285(t=140 ${{\text{μ}}{\rm{s}}}$)0.41
    1656(t=230 ${{\text{μ}}{\rm{s}}}$)1923(t=210 ${{\text{μ}}{\rm{s}}}$)2140(t=190 ${{\text{μ}}{\rm{s}}}$)0.44
    1968(Average)2054(Average)2237(Average)0.41
    下载: 导出CSV

    表  4  爆破参数表

    Table  4.   Blasting parameters

    H/mh/ma/mb/mL/ml/mQ/kg
    1.702.01.20.201.500.9
    2.002.01.20.221.781.0
    2.502.51.50.452.052.0
    3.003.01.50.672.333.0
    下载: 导出CSV

    表  5  振动监测表

    Table  5.   Blasting vibration monitoring

    Measuring pointDistance/mvx/(cm·s–1)fx/Hzvy/(cm·s–1)fy/Hzvz/(cm·s–1)fz/Hz
    1163–0.219.16–0.289.160.2718.31
    21540.048.850.0435.710.039.48
    33390.0412.160.057.830.0613.29
    42340.1918.31–0.149.16–0.1118.31
    下载: 导出CSV
  • [1] MA G W, HAO H, WANG F. Simulations of explosion-induced damage to underground rock chambers [J]. Journal of Rock Mechanics and Geotechnical Engineering, 2011, 3(1): 19–29. doi: 10.3724/SP.J.1235.2011.00019
    [2] YUE Z W, QIU P, YANG R S, et al. Stress analysis of the interaction of a running crack and blasting waves by caustics method [J]. Engineering Fracture Mechanics, 2017, 184: 339–351. doi: 10.1016/j.engfracmech.2017.08.037
    [3] 何成龙, 杨军. 主动围压和爆炸加载作用下岩石动态响应研究 [J]. 兵工学报, 2017, 38(12): 2395–2405. doi: 10.3969/j.issn.1000-1093.2017.12.013

    HE C L, YANG J. Research on dynamic response of rock under blast loading and active confining pressure [J]. Acta Armamentarii, 2017, 38(12): 2395–2405. doi: 10.3969/j.issn.1000-1093.2017.12.013
    [4] ZHAO J J, ZHANG Y, RANJITH P G. Numerical simulation of blasting-induced fracture expansion in coal masses [J]. International Journal of Rock Mechanics and Mining Sciences, 2017, 100: 28–39. doi: 10.1016/j.ijrmms.2017.10.015
    [5] ZHANG X L, JIAO Y Y, MA J F. Simulation of rock dynamic failure using discontinuous numerical approach [J]. Computers and Geotechnics, 2018, 96: 160–166. doi: 10.1016/j.compgeo.2017.10.001
    [6] 夏祥, 李海波, 李俊如, 等. 岩体爆生裂纹的数值模拟 [J]. 岩土力学, 2006, 27(11): 1987–1991. doi: 10.3969/j.issn.1000-7598.2006.11.025

    XIA X, LI H B, LI J R, et al. Numerical simulation of blast-induced cracks in rock [J]. Rock and Soil Mechanics, 2006, 27(11): 1987–1991. doi: 10.3969/j.issn.1000-7598.2006.11.025
    [7] 周艳, 叶海旺, 易长平, 等. 台阶爆破相邻炮孔间损伤范围的数值模拟 [J]. 工程爆破, 2014, 20(2): 17–20, 28. doi: 10.3969/j.issn.1006-7051.2014.02.005

    ZHOU Y, YE H W, YI C P, et al. Numerical simulation of damage zone between the adjacent boreholes in bench blasting [J]. Engineering Blasting, 2014, 20(2): 17–20, 28. doi: 10.3969/j.issn.1006-7051.2014.02.005
    [8] 郭东明, 闫鹏洋, 杨仁树, 等. 动静荷载下巷道围岩倾斜裂纹的动焦散试验 [J]. 采矿与安全工程学报, 2016, 33(4): 668–675.

    GUO D M, YAN P Y, YANG R S, et al. Dynamic caustic test of inclined crack in roadwaysurrounding rock under dynamic and static load [J]. Journal of Mining and Safety Engineering, 2016, 33(4): 668–675.
    [9] 钟波波, 李宏, 张永彬. 爆炸荷载作用下岩石动态裂纹扩展的数值模拟 [J]. 爆炸与冲击, 2016, 36(6): 825–831. doi: 10.11883/1001-1455(2016)06-0825-07

    ZHONG B B, LI H, ZHANG Y B. Numerical simulation of dynamic cracks propagation of rock under blasting loading [J]. Explosion and Shock Waves, 2016, 36(6): 825–831. doi: 10.11883/1001-1455(2016)06-0825-07
    [10] 门建兵, 蒋建伟, 王树有. 爆炸冲击数值模拟技术基础 [M]. 北京: 北京理工大学出版社, 2015.

    MEN J B, JIANG J W, WANG S Y. Numerical simulation of explosion impact [M]. Beijing: Beijing Institute of Technology Press, 2015.
    [11] 钮强. 岩石爆破机理[M]. 沈阳: 东北工学院出版社, 1990.

    NIU Q. Rock blasting mechanism [M]. Shenyang: Northeast Institute of Technology Press, 1990.
    [12] LI X F, LI H B, ZHAO J. 3D polycrystalline discrete element method (3PDEM) for simulation of crack initiation and propagation in granular rock [J]. Computers and Geotechnics, 2017, 90: 96–112. doi: 10.1016/j.compgeo.2017.05.023
    [13] YILMAZ O, UNLU T. Three dimensional numerical rock damage analysis under blasting load [J]. Tunnelling and Underground Space Technology, 2013, 38: 266–278. doi: 10.1016/j.tust.2013.07.007
    [14] WANG Z L, KONIETZKY H. Modelling of blast-induced fractures in jointed rock masses [J]. Engineering Fracture Mechanics, 2009, 76(12): 1945–1955. doi: 10.1016/j.engfracmech.2009.05.004
    [15] ZHU W C, BAI Y, LI X B. Numerical simulation on rock failure under combined static and dynamic loading during SHPB tests [J]. International Journal of Impact Engineering, 2012, 49: 142–157. doi: 10.1016/j.ijimpeng.2012.04.002
    [16] 王礼立, 朱兆祥. 应力波基础 [M]. 2版. 北京: 国防工业出版社, 2005.

    WANG L L, ZHU Z X. Stress wave foundation [M]. 2nd ed. Beijing: National Defense Industry Press, 2005.
    [17] 陈宝心, 杨勤荣. 爆破动力学基础 [M]. 武汉: 湖北科学技术出版社, 2005.

    CHEN B X, YANG Q R. Basis of blasting dynamics [M]. Wuhan: Hubei Science and Technology Press, 2005.
  • 加载中
图(7) / 表(5)
计量
  • 文章访问数:  6626
  • HTML全文浏览量:  2410
  • PDF下载量:  37
出版历程
  • 收稿日期:  2018-11-09
  • 修回日期:  2018-11-19

目录

    /

    返回文章
    返回