旋转对卵形弹侵彻钢板影响的FEM-SPH耦合模拟

肖毅华 吴和成 朱爱华 董晃晃 平学成

肖毅华, 吴和成, 朱爱华, 董晃晃, 平学成. 旋转对卵形弹侵彻钢板影响的FEM-SPH耦合模拟[J]. 高压物理学报, 2019, 33(5): 055103. doi: 10.11858/gywlxb.20180675
引用本文: 肖毅华, 吴和成, 朱爱华, 董晃晃, 平学成. 旋转对卵形弹侵彻钢板影响的FEM-SPH耦合模拟[J]. 高压物理学报, 2019, 33(5): 055103. doi: 10.11858/gywlxb.20180675
XIAO Yihua, WU Hecheng, ZHU Aihua, DONG Huanghuang, PING Xuecheng. Effect of Rotation on Penetration of Steel Plate by Ogival Projectile Using Coupled FEM-SPH Simulation[J]. Chinese Journal of High Pressure Physics, 2019, 33(5): 055103. doi: 10.11858/gywlxb.20180675
Citation: XIAO Yihua, WU Hecheng, ZHU Aihua, DONG Huanghuang, PING Xuecheng. Effect of Rotation on Penetration of Steel Plate by Ogival Projectile Using Coupled FEM-SPH Simulation[J]. Chinese Journal of High Pressure Physics, 2019, 33(5): 055103. doi: 10.11858/gywlxb.20180675

旋转对卵形弹侵彻钢板影响的FEM-SPH耦合模拟

doi: 10.11858/gywlxb.20180675
基金项目: 国家自然科学基金地区基金(11862005);江西省青年科学基金(20181BAB211012);天津市高校“中青年骨干创新人才”培养计划(津教委人函[2017]23号)
详细信息
    作者简介:

    肖毅华(1984—),男,博士,副教授. 主要从事防护材料/结构设计与分析、机械结构强度与破坏研究. E-mail:xiaoyihua@ecjtu.edu.cn

  • 中图分类号: O385

Effect of Rotation on Penetration of Steel Plate by Ogival Projectile Using Coupled FEM-SPH Simulation

  • 摘要: 建立了卵形弹侵彻钢板的FEM-SPH耦合计算模型,研究了弹靶间摩擦系数对弹体剩余速度计算结果的影响,根据实验结果确定了合理的摩擦系数,使耦合计算模型能准确地预测弹体剩余速度和靶板弹道极限。以该模型为基础,在两种不同着靶速度下,研究了弹体的旋转对其正侵彻和以不同入射角斜侵彻钢板时剩余速度和弹道偏转的影响。正侵彻下:旋转对弹体剩余速度的影响大,而对弹道偏转的影响很小;随着转速的增加,剩余速度增大,弹体侵彻能力提高。斜侵彻下:旋转对弹体的剩余速度和弹道偏转都有明显影响,但弹体转速的增大并不总使其侵彻能力提高,与入射角和着靶速度有关;同时旋转使弹体沿入射面外发生偏转,其偏转方向与弹体的旋转方向相关。

     

  • 图  FEM-SPH耦合计算模型

    Figure  1.  Coupled FEM-SPH model

    图  不同摩擦系数下的剩余速度总体相对误差

    Figure  2.  Overall relative error of residual velocity for different friction coefficients

    图  数值模拟和实验[10]获得的弹靶变形情况对比

    Figure  3.  Comparison of deformations of projectile and target obtained by numerical simulation and experiment[10]

    图  剩余速度随转速的变化曲线

    Figure  4.  Residual velocity-rotation speed curves

    图  着靶速度为298.2 m/s时不同转速下弹体侵彻钢板过程中的变形

    Figure  5.  Penetration deformations of steel plate with different rotation speeds of projectile at an incident velocity of 298.2 m/s

    图  着靶速度为365.0 m/s时不同转速下弹体侵彻钢板过程中的变形

    Figure  6.  Penetration deformations of steel plate with different rotation speeds of projectile at an incident velocity of 365.0 m/s

    图  靶板中观测粒子在xz平面内的运动轨迹(着靶速度298.2 m/s)

    Figure  7.  Trajectories in xz plane of the observed particles in the target (Incident velocity: 298.2 m/s)

    图  转速随时间的变化曲线

    Figure  8.  Curves of rotation speed time history

    图  不同着靶速度时剩余速度随转速的变化曲线

    Figure  9.  Residual velocity-rotation speed curves for different incident velocities

    图  10  着靶速度365.0 m/s、入射角45°和转速5×105 r/min时的变形

    Figure  10.  Deformations for incident velocity 365.0 m/s, incident angle 45° and rotation speed 5×105 r/min

    图  11  侵彻过程中任意时刻的弹体偏转角示意图

    Figure  11.  Schematic for deflection angles of projectile at an arbitrary time of penetration process

    图  12  着靶速度298.2 m/s时弹体偏转角$\Delta {\alpha _1}$的变化曲线

    Figure  12.  Changes of projectile deflection angle $\Delta {\alpha _1}$ for incident velocity of 298.2 m/s

    图  13  着靶速度298.2 m/s时弹体偏转角$\Delta {\alpha _2}$的变化曲线

    Figure  13.  Changes of projectile deflection angle $\Delta {\alpha _2}$ for incident velocity of 298.2 m/s

    图  14  着靶速度365.0 m/s时弹体偏转角$\Delta {\alpha _1}$的变化曲线

    Figure  14.  Changes of projectile deflection angle $\Delta {\alpha _1}$ for incident velocity of 365.0 m/s

    图  15  着靶速度为365.0 m/s时弹体偏转角$\Delta {\alpha _2}$的变化曲线

    Figure  15.  Changes of projectile deflection angle $\Delta {\alpha _2}$ for incident velocity of 365.0 m/s

    图  16  弹体沿相反方向旋转时弹体姿态的对比

    Figure  16.  Comparison of projectile attitudes for projectile rotating in opposite directions

    图  17  弹体沿相反方向旋转时弹体偏转角的对比

    Figure  17.  Comparison of projectile deflection angles for projectile rotating in opposite directions

    表  1  钢板的材料参数[11]

    Table  1.   Material parameters for steel plate[11]

    Mass density/
    (kg·m–3)
    Young’s modulus/GPaPoisson’s ratioTaylor-Quinney coefficient $\chi $Specific heat Cp/(J·kg–1·K–1)Thermal expansion coefficient $\alpha $/K–1Damage coupling parameter $\beta $
    78502100.330.94521.2×10–50
    Johnson-Cook (JC) strength model parameters
    A/MPaB/MPanC${\dot \varepsilon _0}$/s–1mTr/K
    4993820.4580.00795×10–40.893293
    JC strength model parametersJC damage model parameters
    Tm/KT0/KD1D2D3D4D5
    18002930.6361.936–2.969–0.0141.014
    JC damage model parametersVoce hardening parametersCritical temperature parameter Tc/K
    DcpdQ1C1Q2C2
    1000001800
    下载: 导出CSV

    表  2  弹体材料参数[11]

    Table  2.   Material parameters for projectile[11]

    Mass density/(kg·m–3)Young’s modulus/GPaPoisson’s ratio Yield stress ${\sigma _{\rm{y}}}$/MPaTangent modulus ETAN/GPa
    78502040.33190015
    下载: 导出CSV

    表  3  剩余速度和弹道极限的数值模拟结果与实验结果对比

    Table  3.   Comparison of residual velocity and ballistic limit obtained by numerical simulation and experiment

    MethodResidual velocity/(m·s–1)Ballistic limit/(m·s–1)
    vi = 298.2 m·s–1vi = 324.6 m·s–1vi = 346.6 m·s–1vi = 365.0 m·s–1
    Experiment[10]91.2160.3193.3239.9295.9
    Simulation95.3158.7197.6226.2284.0
    Relative error/% 4.5 1.0 2.2 5.7 4.0
    下载: 导出CSV
  • [1] 李晓杰, 姜力, 赵铮, 等. 高速旋转弹头侵彻运动金属薄板的数值模拟 [J]. 爆炸与冲击, 2008, 28(1): 57–61. doi: 10.3321/j.issn:1001-1455.2008.01.010

    LI X J, JIANG L, ZHAO Z, et al. Numerical study on penetration of a high-speed-rotating bullet into the moving sheet-metal plate [J]. Explosion and Shock Waves, 2008, 28(1): 57–61. doi: 10.3321/j.issn:1001-1455.2008.01.010
    [2] 李勇, 于海龙, 芮筱亭. 旋转弹侵彻钢板的数值模拟 [J]. 火力与指挥控制, 2014(12): 31–35.

    LI Y, YU H L, RUI X T. Numerical study on penetration of rotating projectile into steel plate [J]. Fire Control & Command Control, 2014(12): 31–35.
    [3] 赵海龙, 王华. 旋转战斗部侵彻多层间隔靶的终点弹道的数值模拟 [J]. 中北大学学报(自然科学版), 2017, 38(3): 295–301. doi: 10.3969/j.issn.1673-3193.2017.03.009

    ZHAO H L, WANG H. Numerical simulation of terminal ballistic of rotating warhead penetrating into multi-layer spaced target [J]. Journal of North University of China (Natural Science Edition), 2017, 38(3): 295–301. doi: 10.3969/j.issn.1673-3193.2017.03.009
    [4] 庞春旭, 何勇, 沈晓军, 等. 刻槽弹体旋转侵彻铝靶试验与数值模拟 [J]. 弹道学报, 2015, 27(1): 70–75. doi: 10.3969/j.issn.1004-499X.2015.01.014

    PANG C X, HE Y, SHEN X J, et al. Experimental investigation and numerical simulation on grooved projectile rotationally penetrating into aluminum target [J]. Journal of Ballistics, 2015, 27(1): 70–75. doi: 10.3969/j.issn.1004-499X.2015.01.014
    [5] 庞春旭, 何勇, 沈晓军, 等. 刻槽弹体旋转侵彻混凝土效应试验研究 [J]. 兵工学报, 2015, 36(1): 46–52. doi: 10.3969/j.issn.1000-1093.2015.01.007

    PANG C X, HE Y, SHEN X J, et al. Experimental investigation on penetration of grooved projectiles into concrete targets [J]. Acta Armamentarii, 2015, 36(1): 46–52. doi: 10.3969/j.issn.1000-1093.2015.01.007
    [6] 潘绪超, 何勇, 何源, 等. 旋转助推钻地弹侵彻混凝土靶试验研究 [J]. 固体火箭技术, 2011, 34(2): 146–149. doi: 10.3969/j.issn.1006-2793.2011.02.003

    PAN X C, HE Y, HE Y, et al. Experimental study of penetrating concrete target with a spin-boosted earth penetrating weapon [J]. Journal of Solid Rocket Technology, 2011, 34(2): 146–149. doi: 10.3969/j.issn.1006-2793.2011.02.003
    [7] 赵子龙, 张瑾瑾, 黄晓琼. 长杆弹侵彻半无限厚土的旋转效应分析 [J]. 振动与冲击, 2010, 29(4): 9–11. doi: 10.3969/j.issn.1000-3835.2010.04.003

    ZHAO Z L, ZHANG J J, HUANG X Q. Revolution effect analysis of a long rod penetrating into soil [J]. Journal of Vibration & Shock, 2010, 29(4): 9–11. doi: 10.3969/j.issn.1000-3835.2010.04.003
    [8] GUPTA N K, MADHU V. Normal and oblique impact of a kinetic energy projectile on mild steel plates [J]. International Journal of Impact Engineering, 1992, 12(3): 333–343. doi: 10.1016/0734-743X(92)90101-X
    [9] MADHU V, RAMANJANEYULU K, BHAT T B, et al. An experimental study of penetration resistance of ceramic armour subjected to projectile impact [J]. International Journal of Impact Engineering, 2005, 32(1): 337–350.
    [10] DEY S, BØRVIK T, HOPPERSTAD O S, et al. The effect of target strength on the perforation of steel plates using three different projectile nose shapes [J]. International Journal of Impact Engineering, 2004, 30(8): 1005–1038.
    [11] BØRVIK T, HOPPERSTAD O S, BERSTAD T, et al. A computational model of viscoplasticity and ductile damage for impact and penetration [J]. European Journal of Mechanics-A/Solids, 2001, 20(5): 685–712. doi: 10.1016/S0997-7538(01)01157-3
    [12] ROSENBERG Z, DEKEL E. 终点弹道学[M]. 钟方平, 译. 北京: 国防工业出版社, 2014: 85–86.
    [13] BØRVIK T, HOPPERSTAD O S, BERSTAD T, et al. Perforation of 12 mm thick steel plates by 20 mm diameter projectiles with flat, hemispherical and conical noses: part Ⅱ: numerical simulations [J]. International Journal of Impact Engineering, 2002, 27(1): 37–64. doi: 10.1016/S0734-743X(01)00035-5
  • 加载中
图(17) / 表(3)
计量
  • 文章访问数:  7530
  • HTML全文浏览量:  4025
  • PDF下载量:  46
出版历程
  • 收稿日期:  2018-11-07
  • 修回日期:  2018-11-28

目录

    /

    返回文章
    返回