Experimental Study of High-Speed Projectile Penetration/Perforation into Reinforced Concrete Targets
-
摘要: 为了研究高速弹体对钢筋混凝土靶的侵彻/贯穿效应,以100 mm口径滑膛炮作为发射平台,驱动10 kg级卵形弹体以820~1195 m/s速度撞击强度为31.0~43.6 MPa的钢筋混凝土靶,获得了弹体侵彻/贯穿钢筋混凝土靶的终点弹道实验数据,并对弹体的侵彻/贯穿深度、靶板侧面自由面效应、弹体的变形进行了详细分析。结果表明:弹体的侵彻/贯穿深度为2.2~2.8 m,部分经验公式预估的侵彻/贯穿深度与实验结果吻合较好;当靶面相对尺寸较小且弹速较高时,靶板侧面自由面效应比较明显;当弹速达到1195 m/s时,弹体开始由刚体向半流体转变。Abstract: The penetration/perforation effects of high-speed ogive-nosed projectiles on reinforced concrete (RC) targets were experimentally investigated. The projectiles with a mass of approximately 10 kg were launched by a 100 mm power gun to striking velocities between 820 and 1195 m/s and impacted on the RC targets with the unconfined cylinder compressive strength from 31.0 MPa to 43.6 MPa. The end-point trajectory data of projectiles penetrating/perforating into RC targets are obtained. The penetration/perforation depths and deformations of high-speed projectiles, free surface effects of RC targets were analyzed. The results show that the penetration/perforation depths of high-speed projectiles ranges from 2.2 m to 2.8 m. The predicted penetration/perforation depths by some empirical formulas were in good agreement with the experimental data. Furthermore, those targets with smaller relative surface size and the projectile with higher velocity, the free surface effects were more significant. In addition, the projectile behaves from rigid to semi-fluid mechanism when the striking velocity reaches to 1195 m/s.
-
Key words:
- high-speed /
- projectile /
- reinforced concrete /
- penetration /
- perforation /
- free surface effects
-
表 1 弹体参数
Table 1. Parameters of the projectiles
Projectile No. CRH d/mm L/mm m/kg 1#,2# 3.0 67.0 450.0 8.00 3# 3.0 72.7 477.3 10.72 4# 4.0 74.5 436.4 9.96 5# 4.5 66.7 460.0 11.09 表 2 随炉试件力学性能检测结果
Table 2. Mechanical properties of heat-treated specimens
Projectile
No.Rp0.2/MPa Rm/MPa Z/% As/% Aku2/J 1#,2# 1322.2 1719.8 13.9 52.8 73.7 3#,4# 1291.3 1626.3 12.2 53.3 71.6 5# 1269.0 1636.5 11.5 48.5 68.7 表 3 钢筋混凝土靶参数
Table 3. Parameters of RC targets
No. fc/MPa rc/% Size of target Size of rebar grid/
(mm×mm)d1/mm $\alpha $/(°) $\eta $ Designed Measured 1# 40 43.6 0.6 1.4 m×1.4 m×2.8 m (2.3 m+0.5 m) 100×100 10 0 20.1 2# 40 43.6 0.6 1.4 m×1.4 m×2.8 m (2.3 m+0.5 m) 100×100 10 0 20.1 3# 40 39.2 0.6 2.4 m×2.4 m×2.4 m 100×100 12 20 33.0 4# 30 32.3 0.3 2.4 m×2.4 m×2.4 m 100×100 12 20 32.2 5# 30 31.0 0.6 ${\varnothing 1.5\;{\rm{m}} \times 3.5\;{\rm{m}}}$ 100×100 10 0 22.5 表 4 侵彻/贯穿深度实验结果
Table 4. Experimental results of penetration/perforation depth
Projectile No. Velocity/(m·s–1) Depth/m Type of penetration 1# 1019 2.44 Limit perforation 2# 1195 2.80 Limit perforation 3# 1020 2.44 Limit perforation 4# 840 2.20 Limit perforation 5# 820 2.30 Semi-infinite penetration -
[1] KENNEDY R P. A review of procedures for the analysis and design of concrete structures to resist missile impact effects [J]. Nuclear Engineering and Design, 1976, 37(2): 183–203. doi: 10.1016/0029-5493(76)90015-7 [2] YOUNG C W. The development of empirical equation for predicting depth of an earth penetrating projectile: SC-DR-67-60 [R]. Albuquerque, NM, US: Sandia National Laboratories, 1967. [3] YOUNG C W. Depth prediction for earth-penetrating projectiles [J]. Journal of the Soil Mechanics and Foundations Division, 1969, 95(3): 803–818. [4] YOUNG C W. Equations for predicting earth penetration by projectiles: an update: SAND88-0013 [R]. Albuquerque, NM, US: Sandia National Laboratories, 1988. [5] YOUNG C W. Penetration equations: SAND97-2426 [R]. Albuquerque, NM, US: Sandia National Laboratories, 1997. [6] HANCHAK S J, FORRESTAL M J, YOUNG E R, et al. Perforation of concrete slabs with 48 MPa (7 ksi) and 140 MPa (20 ksi) unconfined compressive strengths [J]. International Journal of Impact Engineering, 1992, 12(1): 1–7. doi: 10.1016/0734-743X(92)90282-X [7] FORRESTAL M J, ALTMAN B S, CARGILE J D, et al. An empirical equation for penetration depth of ogive-nose projectiles into concrete targets [J]. International Journal of Impact Engineering, 1994, 15(4): 395–405. doi: 10.1016/0734-743X(94)80024-4 [8] FORRESTAL M J, FREW D J, HANCHAK S J, et al. Penetration of grout and concrete targets with ogive-nose steel projectiles [J]. International Journal of Impact Engineering, 1996, 18(5): 465–476. doi: 10.1016/0734-743X(95)00048-F [9] FORRESTAL M J, TZOU D Y. A spherical cavity-expansion penetration model for concrete targets [J]. International Journal of Solids and Structures, 1997, 34(31/32): 4127–4146. [10] FORRESTAL M J, FREW D J, HICKERSON J P, et al. Penetration of concrete targets with deceleration-time measurements [J]. International Journal of Impact Engineering, 2003, 28(5): 479–497. doi: 10.1016/S0734-743X(02)00108-2 [11] CHEN X W, LI Q M. Deep penetration of a non-deformable projectile with different geometrical characteristics [J]. International Journal of Impact Engineering, 2002, 27(6): 619–637. doi: 10.1016/S0734-743X(02)00005-2 [12] LI Q M, CHEN X W. Dimensionless formulae for penetration depth of concrete target impacted by a non-deformable projectile [J]. International Journal of Impact Engineering, 2003, 28(1): 93–116. doi: 10.1016/S0734-743X(02)00037-4 [13] CHEN X W, FAN S C, LI Q M. Oblique and normal penetration/perforation of concrete target by rigid projectiles [J]. International Journal of Impact Engineering, 2004, 30(6): 617–637. doi: 10.1016/j.ijimpeng.2003.08.003 [14] 金栋梁, 何翔, 刘瑞朝, 等. 岩石侵彻深度经验公式[C]//第五届全国工程结构安全防护学术会议. 南京: 中国力学学会爆炸力学专业委员会, 2005. [15] 何翔, 刘瑞朝, 吴飚, 等. 现场岩体侵彻实验研究及侵彻深度经验公式的提出[C]//第四届深部岩体力学与工程灾害控制学术研讨会. 北京: 中国岩石力学与工程学会软岩工程与深部灾害控制分会, 2009. [16] LI Q M, REID S R, WEN H M, et al. Local impact effects of hard missiles on concrete targets [J]. International Journal of Impact Engineering, 2005, 32(1): 224–284. [17] BETH R A. Penetration of projectiles in concrete [R]. Washington DC: PPAB Interim Report, 1941. [18] ACE. Fundamentals of protective structures [R]. Army Corps of Engineers, Office of the Chief of Engineers, 1946. [19] NDRC. Effects of impact and explosion. Summary technical report of division 2 [R]. Washington DC: National Defense Research Committee, 1946. [20] FANG Q, WU H. Concrete structures under projectile impact [M]. Singapore: Springer, 2017. [21] 武海军, 张爽, 黄风雷. 钢筋混凝土靶的侵彻与贯穿研究进展 [J]. 兵工学报, 2018, 39(1): 182–208.WU H J, ZHANG S, HUANG F L. Research progress in penetration/perforation into reinforced concrete targets [J]. Acta Armamentarii, 2018, 39(1): 182–208. [22] KAR A K. Local effects of tornado-generated missiles [J]. Journal of the Structural Division, 1978, 104(5): 809–816. [23] WHIFFEN P. UK Road Research Laboratory Note No [M]. MOS/311, 1943. [24] NELSON R W. Low-yield earth-penetrating nuclear weapons [J]. Science and Global Security, 2002, 10(1): 1–20. doi: 10.1080/08929880212326 [25] DAVIS R N, NEELY A M, JONES S E. Mass loss and blunting during high-speed penetration [J]. Proceeding of the Institution of Mechanical Engineers: Part C, 2004, 218(9): 1053–1062. [26] MU Z C, ZHANG W. An investigation on mass loss of ogival projectiles penetrating concrete targets [J]. International Journal of Impact Engineering, 2011, 38(8/9): 770–778. [27] 王可慧, 耿宝刚, 初哲, 等. 弹体高速侵彻钢筋混凝土靶的结构变形及质量损失的实验研究 [J]. 高压物理学报, 2014, 28(1): 61–68. doi: 10.11858/gywlxb.2014.01.010WANG K H, GENG B G, CHU Z, et al. Experimental studies on structural response and mass loss of high-velocity projectiles penetrating into reinforced concrete targets [J]. Chinese Journal of High Pressure Physics, 2014, 28(1): 61–68. doi: 10.11858/gywlxb.2014.01.010 [28] 王可慧. 高速弹体侵彻混凝土靶研究[D]. 北京: 北京理工大学, 2011.WANG K H. Study of high velocity projectile penetrating concrete target [D]. Beijing: Beijing Institute of Technology, 2011. [29] 赵南, 王可慧, 李明, 等. 薄壁弹体高速侵彻钢筋混凝土实验研究 [J]. 实验力学, 2017, 32(4): 573–579.ZHAO N, WANG K H, LI M, et al. Experimental study of high speed penetration of thin-wall projectile in steel reinforced concrete [J]. Journal of Experimental Mechanics, 2017, 32(4): 573–579. [30] 武海军, 黄风雷, 王一楠, 等. 高速侵彻混凝土弹体头部侵蚀终点效应实验研究 [J]. 兵工学报, 2012, 23(1): 48–55.WU H J, HUANG F L, WANG Y N, et al. Experimental investigation on projectile nose eroding effect of high-velocity penetration into concrete [J]. Acta Armamentarii, 2012, 23(1): 48–55. [31] 王一楠. 动能弹体高速侵彻混凝土机理研究[D]. 北京: 北京理工大学, 2010.WANG Y N. The mechanism of high-speed kinetic energy projectile penetration into concrete [D]. Beijing: Beijing Institute of Technology, 2010. [32] 肖玲, 梁仕发. 超高速穿甲弹对钢筋混凝土靶板的毁伤作用研究综述[C]//第六届全国工程结构安全防护学术会议. 洛阳: 中国力学学会爆炸力学专业委员会, 2007. [33] 宋梅利, 王晓鸣, 赵希芳, 等. 弹体高速侵彻混凝土靶侵彻效应影响因素分析 [J]. 南京理工大学学报, 2014, 38(3): 390–395.SONG M L, WANG X M, ZHAO X F, et al. Influencing factors of penetration efficiency for projectiles’ high-speed penetration into concrete targets [J]. Journal of Nanjing University of Science and Technology, 2014, 38(3): 390–395. [34] 宋梅利, 李文彬, 王晓鸣, 等. 弹体高速侵彻效率的实验和量纲分析 [J]. 爆炸与冲击, 2016, 36(6): 752–758. doi: 10.11883/1001-1455(2016)06-0752-07SONG M L, LI W B, WANG X M, et al. Experiments and dimensional analysis of high-speed projectile penetration efficiency [J]. Explosion and Shock Waves, 2016, 36(6): 752–758. doi: 10.11883/1001-1455(2016)06-0752-07 [35] WARREN T L, HANCHAK S J, POORMON K L. Penetration of limestone targets by ogive-nosed VAR 4340 steel projectiles at oblique angles: experiments and simulations [J]. International Journal of Impact Engineering, 2004, 30: 1307–1331. doi: 10.1016/j.ijimpeng.2003.09.047 [36] 孔祥振, 方秦, 吴昊. 考虑靶体自由表面和开裂区影响的可变形弹体斜侵彻脆性材料的终点弹道分析 [J]. 兵工学报, 2014, 35(6): 814–821.KONG X Z, FANG Q, WU H. Terminal ballistics study of deformable projectile penetrating brittle material targets for free-surface and crack region effects [J]. Acta Armamentarii, 2014, 35(6): 814–821.