材料层裂研究的主要进展

周洪强 张凤国 潘昊 何安民 王裴

周洪强, 张凤国, 潘昊, 何安民, 王裴. 材料层裂研究的主要进展[J]. 高压物理学报, 2019, 33(5): 050301. doi: 10.11858/gywlxb.20180670
引用本文: 周洪强, 张凤国, 潘昊, 何安民, 王裴. 材料层裂研究的主要进展[J]. 高压物理学报, 2019, 33(5): 050301. doi: 10.11858/gywlxb.20180670
ZHOU Hongqiang, ZHANG Fengguo, PAN Hao, HE Anmin, WANG Pei. Main Progress in Research on Material Spalling[J]. Chinese Journal of High Pressure Physics, 2019, 33(5): 050301. doi: 10.11858/gywlxb.20180670
Citation: ZHOU Hongqiang, ZHANG Fengguo, PAN Hao, HE Anmin, WANG Pei. Main Progress in Research on Material Spalling[J]. Chinese Journal of High Pressure Physics, 2019, 33(5): 050301. doi: 10.11858/gywlxb.20180670

材料层裂研究的主要进展

doi: 10.11858/gywlxb.20180670
基金项目: 科学挑战专题(TZ2018001)
详细信息
    作者简介:

    周洪强(1970-),男,博士,副研究员,主要从事材料动态损伤破坏研究. E-mail: zhouhq@iapcm.ac.cn

  • 中图分类号: O347.3

Main Progress in Research on Material Spalling

  • 摘要: 层裂是一种重要的动态损伤破坏现象,由物质界面的反射稀疏波相互作用引起,其细观尺度上的物理机制是微损伤(即微孔洞和微裂纹)的成核、生长和汇合。围绕美国物理学会George E. Duvall冲击压缩科学奖的3位获奖者Grady、Curran和Johnson的相关工作,概述层裂现象的一些主要研究进展,简要介绍层裂现象的研究历史,以期更深刻地理解那些著名的层裂物理模型和实验技术。此外,报道了最近取得的最新研究成果,阐述了冻结不同损伤水平状态的双层靶层裂实验技术与Hopkinson压杆共通的工作原理。针对微损伤成核和生长断裂破碎模型NAG/FRAG在数学上的不一致性和在物理上的不完备性,指出对于延性材料的层裂过程,只要微孔洞成核的累积数目密度满足尺寸的指数分布、微孔洞半径的生长速度与半径呈线性关系,就能够得到解析形式的损伤度演化方程,该修正模型MNAG在数学上是一致的,在物理上是完备的;对于白以龙等建立的欧拉形式的微损伤数目守恒方程,指出计算损伤度不必显式求解该方程,损伤度的表达式一般通过拉格朗日形式的微损伤数目守恒方程获得;针对损伤度函数模型或封加坡模型,以更加简洁的方法进行了推导。

     

  • 图  典型延性金属层裂过程中应力-孔隙度关系

    Figure  1.  Typical stress-porosity relationship for the spall of ductile metals

    图  Hopkinson压杆示意图

    Figure  2.  Schematic of Hopkinson bar

    图  采用双层靶技术的平板碰撞层裂实验中应力波动力学示意图

    Figure  3.  Wave dynamics of plate impact experiment for spallation using the double target technique

  • [1] HOPKINSON B. Brittleness and ductility [M]. London: Cambridge University Press, 1910: 64–76.
    [2] HOPKINSON B. The pressure of a blow [J]. Nature, 1912, 88(2207): 531–536.
    [3] HOPKINSON B. A method of measuring the pressure produced in the detonation of high explosives or by the impact of bullets [J]. Philosophical Transactions of the Royal Society of London, 1914, 213213A: 437–456.
    [4] SEAMAN L, CURRAN D R, SHOCKEY D A. Computational models for ductile and brittle fracture [J]. Journal of Applied Physics, 1976, 47(11): 4814–4826. doi: 10.1063/1.322523
    [5] ERLICH D C, WOOTEN D C, CREWDSON R C. Dynamic tensile failure of glycerol [J]. Journal of Applied Physics, 1971, 42(13): 5495–5502. doi: 10.1063/1.1659970
    [6] CURRAN D R, SEAMAN L, SHOCKEY D A. Dynamic failure of solids [J]. Physics Reports, 1987, 147(5/6): 253–388.
    [7] SHOCKEY D A, SEAMAN L, CURRAN D R, et al. A computational model for fragmentarion of Armco iron under ballistic impact [R]. Aberdeen Proving Ground, MD: SRI Intermational for the U. S. Ballistic Research Laborotories, 1973.
    [8] MEYERS M A, AIMONE C T. Dynamic fracture (spalling) of metals [J]. Progress in Materials Science, 1983, 28(1): 1–96. doi: 10.1016/0079-6425(83)90003-8
    [9] 白以龙. 冲击载荷下材料的损伤和破坏 [M]//王礼立, 余同希, 李永池. 冲击动力学进展. 合肥: 中国科学技术出版社, 1992: 34–57.

    BAI Y L. Material damage and failure under shock loading [M]//WANG L L, YU T X, LI Y C. Advances in Dynamic Mechanics. Hefei: University of Science and Technology of China Press, 1992: 34–57.
    [10] 黄筑平, 杨黎明, 潘客麟. 材料的动态损伤和失效 [J]. 力学进展, 1993, 23(4): 433–467. doi: 10.6052/1000-0992-1993-4-J1993-042

    HUANG Z P, YANG L M, PAN K L. Dynamic damage and failure of materials [J]. Advances in Mechanics, 1993, 23(4): 433–467. doi: 10.6052/1000-0992-1993-4-J1993-042
    [11] GRADY D E, KIPP M E. Dynamic fracture and fragmentation [M]//ASAY J R, SHAHINPOOR M. High-Pressure Shock Compression of Solids. New York: Springer-Verlag, 1993: 265–322.
    [12] DAVISON LEE, GRADY D, SHAHINPOOR M. High-pressure shock compression of solids II: dynamic fracture and fragmentation [M]. New York: Springer-Verlag, 1996.
    [13] ANTOUN T, SEAMAN L, CURRAN D R, et al. Spall fracture [M]. New York: Springer-Verlag, 2002.
    [14] GRADY D. Dynamic fragmentation of solids [M]//HORIE Y. Shock Wave Science and Technology Reference Library: Vol. 3., Solids II. Berlin Heidelberg: Spring-Verlag, 2009: 169–276.
    [15] KANEL G I. Spall fracture: methodological aspects, mechanisms and governing factors [J]. International Journal of Fracture, 2010, 163(1): 173–191.
    [16] CHEN X, ASAY J R, DWIVEDI S K, et al. Spall behavior of aluminum with varying microstructures [J]. Journal of Applied Physics, 2006, 99(2): 023528. doi: 10.1063/1.2165409
    [17] ELERT M, FURNISH M D, CHAU R, et al. Shock compression of condensed matter-2007 [C]//New York: AIP Conference Proceedings, 2008: 955.
    [18] GRADY D E. The spall strength of condensed matter [J]. Journal of the Mechanics and Physics of Solids, 1988, 36(3): 353–384. doi: 10.1016/0022-5096(88)90015-4
    [19] ELERT M, BUTTLER W T, FURNISH M D, et al. Shock compression of condensed matter-2009 [C]//New York: AIP Conference Proceedings, 2010: 1195.
    [20] ELERT M, BUTTLER W T, BORG J P, et al. Shock compression of condensed matter-2011 [C]. New York: AIP Conference Proceedings, 2012: 1426.
    [21] JOHNSON J N. Dynamic fracture and spallation in ductile solids [J]. Journal of Applied Physics, 1981, 52(4): 2812–2825. doi: 10.1063/1.329011
    [22] JOHNSON J N, ADDESSIO F L. Tensile plasticity and ductile fracture [J]. Journal of Applied Physics, 1988, 64(12): 6699–6712. doi: 10.1063/1.342000
    [23] JOHNSON J N, ADDESSIO F L. Rate-dependent ductile failure model [J]. Journal of Applied Physics, 1993, 74(3): 1640–1648. doi: 10.1063/1.354814
    [24] MACKENZIE J H. The elastic constants of a solid containing spherical holes [J]. Proceedings of the Physical Society B, 1950, 63(1): 2–11. doi: 10.1088/0370-1301/63/1/302
    [25] ZUO Q H, RICE J R. An implicit algorithm for a rate-dependent ductile failure model [J]. Journal of Applied Physics, 2008, 104(8): 083526. doi: 10.1063/1.3005883
    [26] GURSON A L. Continuum theory of ductile rupture by void nucleation and growth: part I-yield criteria and flow rules for porous ductile media [J]. Journal of Engineering Materials and Technology, 1977, 99(1): 2–15. doi: 10.1115/1.3443401
    [27] RAJENDRAN A M, DIETENBERGER M A, GROVE D J. A void growth-based failure model to describe spallation [J]. Journal of Applied Physics, 1989, 85(4): 1521–1527.
    [28] FENG J P, JING F Q, ZHANG G R. Dynamic ductile fragmentation and the damage function model [J]. Journal of Applied Physics, 1997, 81(6): 2575–2578. doi: 10.1063/1.363921
    [29] CARROLL M, HOLT A C. Suggested modification of the P-α model for porous materials [J]. Journal of Applied Physics, 1972, 43(2): 759–761. doi: 10.1063/1.1661203
    [30] SIMO J C, HUGHES T J R. Computational inelasticity [M]. New York: Springer-Verlag, 1998.
    [31] 余同希. Hopkinson杆和Hopkinson的故事 [J]. 力学与实践, 2013, 35(3): 97–99. doi: 10.6052/1000-0879-12-435

    YU T X. Hopkinson bar and the stories of Hopkinson [J]. Mechanics in Engineering, 2013, 35(3): 97–99. doi: 10.6052/1000-0879-12-435
    [32] 王礼立. 应力波基础 [M]. 2版. 北京: 国防工业出版社, 2005: 57–58.

    WANG L L. The base of stress wave [M]. 2nd ed. Beijing: Defense Industry Press, 2005: 57–58.
    [33] KOLSKY H. An investigation of the mechanical properties of materials at very high rates of loading [J]. Proceedings of the Royal Society B, 1949, 62(11): 676–700.
    [34] THISSELL W R, ZUREK A K, MACDOUGALL D A S, et al. The effect of material cleanliness on dynamic damage evolution in 10100 Cu [C]// FURNISH M D, THADHANI N N, HORIE Y. Shock Compression of Condensed Matter-2001. New York: AIP Conference Proceedings, 2002: 475–478.
    [35] REED R P, SCHUSTER D M. Filament fracture and postimpact strength of boron-aluminum composites [J]. Journal of Composite Materials, 1970, 4(4): 514–525. doi: 10.1177/002199837000400407
    [36] GRAY III G T. Influence of shock-wave deformation on the structure/property behavior of materials [M]//ASAY J R, SHAHINPOOR M. High-Pressure Shock Compression of Solids. New York: Springer-Verlag, 1993: 187–215.
    [37] LLORCA F, ROY G. Metallurgical investigation of dynamic damage in tantalum [C]//FURNISH M D, GUPTA Y M, FORBES J W. Shock Compression of Condensed Matter-2003. New York: AIP Conference Proceedings, 2004: 589–592.
    [38] CZARNOTA C, JACQUES N, MERCIER S, et al. Modeling of dynamic ductile fracture and application to the simulation of plate impact tests on tantalum [J]. Journal of the Mechanics and Physics of Solids, 2008, 56(4): 1624–1650. doi: 10.1016/j.jmps.2007.07.017
    [39] 洪滔. 高强动载荷下延性金属损伤演化研究: 2009A0101007 [R]. 绵阳: 中国工程物理研究院, 2012.

    HONG T. Study on the damage evolution of ductile metals under high-rate and high-pressure loading: 2009A0101007 [R]. Mianyang: China Academy of Engineering Physics, 2012.
    [40] 裴晓阳, 彭辉, 贺红亮, 等. 加载应力幅值对高纯铜动态损伤演化特性研究 [J]. 物理学报, 2015, 64(5): 054601. doi: 10.7498/aps.64.054601

    PEI X Y, PENG H, HE H L, et al. Study on the effect of peak stress on dynamic damage evolution of high pure copper [J]. Acta Physica Sinica, 2015, 64(5): 054601. doi: 10.7498/aps.64.054601
    [41] RHODES R. Introduction [M]//The Los Alamos Primer: the First Lectures on How to Build an Atomic Bomb, 1992.
    [42] REED B C. The history and science of the manhattan project [M]. Berlin: Springer-Verlag, 2014: 307–308.
    [43] ANDRIOT P, CHAPRON P, LAMBERT V, et al. Influence of melting on shocked free surface behaviour using Doppler laser interferometry and X-ray densitometry [C]//ASAY J R, GRAHAM R A, STRAUB G K. Shock Waves in Condensed Matter-1983. Northe-Holland, Amsterdam, 1984: 227–230.
    [44] HOLTKAMP D B, CLARK D A, FERM E N, et al. A survey of high explosive-induced damage and spall in selected metals using proton radiography [C]//FURNISH M D, GUPTA Y M, FORBES J W. Shock Compression of Condensed Matter-2003. New York: AIP Conference Proceedings, 2004: 477–482.
    [45] SIGNOR L, DE RESSÉGUIER T, DRAGON A, et al. Investigation of fragments size resulting from dynamic fragmentation in melted state of laser shock-loaded tin [J]. International Journal of Impact Engineering, 2010, 37(8): 887–900. doi: 10.1016/j.ijimpeng.2010.03.001
    [46] MOTT N F. Transcription and facsimiles of reports of N. F. Mott [M]//GRADY D. Fragmentation of Rings and Shells. Berlin: Spring-Verlag, 2006: 203–373.
    [47] MOTT N F. Fragmentation of shell cases [J]. Proceedings of the Royal Society, 1947, 189A(1018): 300–308.
    [48] RINEHART J S. Some quantitative data bearing on the scabbing of metals under explosive attack [J]. Journal of Applied Physics, 1951, 22(5): 555–560. doi: 10.1063/1.1700005
    [49] RINEHART J S. Behaviour of metals under impulsive loads [M]. Cleveland: American Society for Metals, 1954: 151.
    [50] WHITEMAN P. Preliminary report on the effect of stress rate on the dynamic fracture of steel, brass and aluminum: UNDEX445 [R]. Britain: Atomic Weapons Research Establishment, 1962.
    [51] SKIDMORE I C. Introduction to shock waves in solids [J]. Applied Materials Research, 1965, 4(3): 131–140.
    [52] BREED B R, MADER C L, VENABLE D. Technique for the determination of dynamic-tensile-strength characteristics [J]. Journal of Applied Physics, 1967, 38(8): 3271–3275. doi: 10.1063/1.1710098
    [53] THURSTON R S, MUDD W L. Spallation criteria for numerical computation: LA4013XAB [R]. Los Alamos Scientific Labortories, 1968.
    [54] RYBAKOV A P. Spall in non-one-dimensional shock waves [J]. International Journal of Impact Engineering, 2000, 24(10): 1041–1082. doi: 10.1016/S0734-743X(00)00029-4
    [55] GATHERS G R. Determination of spall strength from surface motion studies [J]. Journal of Applied Physics, 1990, 67(9): 4090–4092. doi: 10.1063/1.344967
    [56] CHHABILDAS L C, BARKER L M, ASAY J R, et al. Relationship of fragment size to normalized spall strength for materials [J]. International Journal of Impact Engineering, 1990, 10(1): 107–124.
    [57] KANEL G I, RAZORENOV S V, UTKIN A V. Spallation in solids under shock-wave loading: analysis of dynamic flow, methodology of measurements, and constitutive factors [M]//DAVISON LEE, GRADY D, SHAHINPOOR M. High-Pressure Shock Compression of Solids II: Dynamic Fracture and Fragmentation, New York: Springer-Verlag, 1996.
    [58] 陈大年, 俞宇颖, 尹志华, 等. 对于层裂强度传统测定方法有效性的讨论 [J]. 工程力学, 2006, 23(1): 62–68. doi: 10.3969/j.issn.1000-4750.2006.01.013

    CHEN D N, YU Y Y, YIN Z H, et al. On the validity of the traditional methodology of spall strength measurement [J]. Engineering Mechanics, 2006, 23(1): 62–68. doi: 10.3969/j.issn.1000-4750.2006.01.013
    [59] HIXSON R S, GRAY III G T, RIGG P A, et al. Dynamic damage investigations using triangular waves [C]//FURNISH M D, GUPTA Y M, FORBES J W. Shock Compression of Condensed Matter-2003. New York: AIP Conference Proceedings, 2004: 469–472.
    [60] KOLLER D D, HIXSON R S, GRAY III G T, et al. Influence of shock-wave profile shape on dynamically induced damage in high-purity copper [J]. Journal of Applied Physics, 2005, 98(10): 103518. doi: 10.1063/1.2128493
    [61] KIPP M E, GRADY D E. Experimental and numerical studies of high-velocity impact fragmentation [M]//DAVISON L, GRADY D, SHAHINPOOR M. High-Pressure Shock Compression of Solids II: Dynamic Fracture and Fragmentation. New York: Springer-Verlag, 1996: 282–339.
    [62] GRADY D E. Spall and fragmentation in high-temperature metals [C]//DAVISON L, GRADY D, SHAHINPOOR M. High-Pressure Shock Compression of Solids II: Dynamic Fracture and Fragmentation. New York: Springer-Verlag, 1996: 219–236.
    [63] CURRAN D R, SEAMAN L. Simplfied models of fracture and fragmentation [C]//DAVISON L, GRADY D, SHAHINPOOR M. High-Pressure Shock Compression of Solids II: Dynamic Fracture and Fragmentation. New York: Springer-Verlag, 1996: 340–365.
    [64] 朱兆祥, 李永池, 王肖钧. 爆炸作用下钢板层裂的数值分析 [J]. 应用数学和力学, 1981, 2(4): 353–368.

    ZHU Z X, LI Y C, WANG X J. Numerical analysis of the spallation of steel target under the explosive loading [J]. Applied Mathematics and Mechanics, 1981, 2(4): 353–368.
    [65] MCQUEEN R G, MARSH S P. Ultimate yield strength of copper [J]. Journal of Applied Physics, 1962, 33(2): 654–665. doi: 10.1063/1.1702483
    [66] BUTCHER B M, BARKER L M, MURSON D E, et al. Influence of stress history on time-dependent spall in metals [J]. AIAA Journal, 1964, 2(6): 977–990. doi: 10.2514/3.2484
    [67] TULER F R, BUTCHER B M. A criterion for the time dependence of dynamic fracture [J]. The International Journal of Fracture Mechanics, 1968, 4(4): 431–437.
    [68] DAVISON L, STEVENS A L. Continuum measures of spall damage [J]. Journal of Applied Physics, 1972, 43(3): 988–994. doi: 10.1063/1.1661319
    [69] DAVISON L, STEVENS A L. Thermomechanical constitution of spalling elastic bodies [J]. Journal of Applied Physics, 1973, 44(2): 668–674. doi: 10.1063/1.1662242
    [70] CURRAN D R. Mesomechanical modeling of fracture [C]//ELERT M, BUTTLER W T, FURNISH M D, et al. Shock Compression of Condensed Matter-2009. New York: AIP Conference Proceedings, 2010: 3–10.
    [71] 周洪强, 张凤国. 层裂损伤成核和生长模型的修正 [J]. 兵工学报, 2013, 34(Suppl 1): 50–52.

    ZHOU H Q, ZHANG F G. The modified damage nucleation and growth model for ductile spall [J]. Acta Armamentarii, 2013, 34(Suppl 1): 50–52.
    [72] 柯孚久, 白以龙, 夏蒙棼. 理想微裂纹系统演化的特征 [J]. 中国科学A辑, 1990(6): 621–631. doi: 10.3321/j.issn:1006-9232.1990.06.002
    [73] KE F J, BAI Y L, XIA M F. Evolution of ideal micro-crack system [J]. Science in China (A), 1990, 33(12): 1447–1459.
    [74] 白洁, 夏蒙棼, 柯孚久, 等. 损伤统计演化方程的性质和数值模拟 [J]. 力学学报, 1999, 31(1): 38–48. doi: 10.3321/j.issn:0459-1879.1999.01.005

    BAI J, XIA M F, KE F J, et al. Properties of the statistical damage evolution equation and its numerical simulation [J]. Acta Mechanica Sinica, 1999, 31(1): 38–48. doi: 10.3321/j.issn:0459-1879.1999.01.005
    [75] MOLINARI A, WRIGHT T W. A physical model for nucleation and early growth of voids in ductile materials under dynamic loading [J]. Journal of the Mechanics and Physics of Solids, 2005, 53(7): 1476–1504. doi: 10.1016/j.jmps.2005.02.010
    [76] CZARNOTA C, MERCIER S, MOLINARI A. Modeling of nucleation and void growth in dynamic pressure loading, application to spall test on tantalum [J]. International Journal of Fracture, 2006, 141(1): 177–194.
    [77] WRIGHT T W, RAMESH K T. Dynamic void nucleation and growth in solids: a self-consistent statistical theory [J]. Journal of the Mechanics and Physics of Solids, 2008, 56(2): 336–359. doi: 10.1016/j.jmps.2007.05.012
    [78] JACQUES N, CZARNOTA C, MERCIER S, et al. A micromechanical constitutive model for dynamic damage and fracture of ductile materials [J]. International Journal of Fracture, 2010, 162(1): 159–175.
    [79] KNOWLES J K, JAKUB M T. Finite dynamic deformations of an incompressible elastic medium containing a spherical cavity [J]. Archive for Rational Mechanics and Analysis, 1965, 18(5): 367–378. doi: 10.1007/BF00281326
    [80] CARROLL M M, HOLT A C. Static and dynamic pore-collapse relations for ductile porous materials [J]. Journal of Applied Physics, 1972, 43(4): 1626–1636. doi: 10.1063/1.1661372
    [81] HERRMANN W. Constitutive equation for the dynamic compaction of ductile porous materials [J]. Journal of Applied Physics, 1969, 40(6): 2490–2499. doi: 10.1063/1.1658021
    [82] JOHNSON J N. Memories of shock wave research at Sandia [M]//ASAY J R, CHHABILDAS L C, LAWRENCE R J, et al. Impactful Times: Memories of 60 Years of Shock Wave Research at Sandia National Laboratories. Gewerbestrasse: Springer International Publishing AG, 2017: 435–437.
    [83] WILKERSON J W, RAMESH K T. A dynamic void growth model governed by dislocation kinetics [J]. Journal of the Mechanics and Physics of Solids, 2014, 70(1): 262–280.
    [84] WILKERSON J W, RAMESH K T. Unraveling the anomalous grain size dependence of cavitation [J]. Physical Review Letters, 2016, 117(21): 215503. doi: 10.1103/PhysRevLett.117.215503
    [85] WILKERSON J W. On the micromechanics of void dynamics at extreme rates [J]. International Journal of Plasticity, 2017, 95(1): 1–22.
    [86] BECKER R. Direct numerical simulation of ductile spall failure [J]. International Journal of Fracture, 2017, 208(1): 5–26.
    [87] PERZYNA P. Internal state variable description of dynamic fracture of ductile solids [J]. International Journal of Solids and Structures, 1986, 22(7): 797–818. doi: 10.1016/0020-7683(86)90123-X
    [88] CORTES R. The growth of microvoids under intense dynamic loading [J]. International Journal of Solids and Structures, 1992, 29(11): 1339–1350. doi: 10.1016/0020-7683(92)90082-5
    [89] TONKS D L, VORTHMAN J E, HIXSON R, et al. Spallation studies on shock loaded U-6 WT PCT NB [C]//FURNISH M D, CHHABILDAS L C, HIXSON R S. Shock Compression of Condensed Matter-1999. New York: AIP Conference Proceedings, 2000: 329–332.
    [90] ORTIZ M, MOLINARI A. Effect of strain hardening and rate sensitivity on the dynamic growth of a void in a plastic material [J]. Journal of Applied Mechanics, 1992, 59(1): 48–53. doi: 10.1115/1.2899463
    [91] MCCLINTOCK F A. A criterion for ductile fracture by the growth of holes [J]. Journal of Applied Mechanics, 1968, 35(2): 363–371. doi: 10.1115/1.3601204
    [92] RICE J R, TRACEY D M. On the ductile enlargement of voids in triaxial stress fields [J]. Journal of the Mechanics and Physics of Solids, 1969, 17(3): 201–217. doi: 10.1016/0022-5096(69)90033-7
    [93] GURSON A L. Plastic flow and fracture behavior of ductile materials incorporating void nucleation, growth, and interaction [D]. Rhode Island: Brown University, 1975.
    [94] LI S F, WANG G. Introduction to Micromechanics and Nanomechanics [M]. Singapore: World Scientific Publishing Private Limited, 2008: 267–280.
    [95] LEE B J, MEAR M E. Studies of the growth and collapse of voids in viscous solids [J]. Journal of Engineering Materials and Technology, 1994, 116(3): 348–358. doi: 10.1115/1.2904298
    [96] HSU C Y, LEE B J, MEAR M E. Constitutive models for power-law viscous solids containing spherical voids [J]. International Journal of Plasticity, 2009, 25(1): 134–160. doi: 10.1016/j.ijplas.2007.11.003
    [97] GOLOGANU M, LEBLOND J B, PERRIN G, et al. Recent extensions of Gurson’s model for porous ductile metals [M]// SUQUET P. Continnum Micromechanics. New York: Springer, 1997: 61–130.
    [98] BENZERGA A A, BESSON J. Plastic potentials for anisotropic porous solids-A/solids [J]. European Journal of Mechanics, 2001, 20(3): 397–434. doi: 10.1016/S0997-7538(01)01147-0
    [99] KERALAVARMA S M, BENZERGA A A. A constitutive model for plastically anisotropic solids with non-spherical voids [J]. Journal of the Mechanics and Physics of Solids, 2010, 58(6): 874–901. doi: 10.1016/j.jmps.2010.03.007
    [100] GURSON A L. Porous rigid-pplastic materials containing rigid inclusion-yield fuction, plastic potential, and void nucleation [C]//TAPLIN D M R. Proceeding of the Fourth International Conference on Fracture. Toronto: Pergamon Press, 1977: 357–364.
    [101] TVERGAARD V. Influence of voids on shear band instabilities under plane strain conditions [J]. International Journal of Fracture, 1981, 17(4): 389–407. doi: 10.1007/BF00036191
    [102] TVERGAARD V, NEEDLEMAN A. Analysis of cup-cone fracture in a round tensile bar [J]. Acta Metallurgica, 1984, 32(1): 157–169. doi: 10.1016/0001-6160(84)90213-X
    [103] PARDOEN T, HUTCHINSON J W. An extended model for void growth and coalescence [J]. Journal of the Mechanics and Physics of Solids, 2000, 48(12): 2467–2512. doi: 10.1016/S0022-5096(00)00019-3
    [104] TVERGAARD V. Material failure by void growth to coalescence [M]//HUTCHINSON J W, WU T Y. Advances in Applied Mechanics. Amsterdam: Academic Press, 1990, 27: 83–151.
    [105] BENZERGA A A, LEBLOND J B. Ductile fracture by void growth to coalescence [M]//AREF H, VAN DER GIESSEN E. Advances in Applied Mechanics. Amsterdam: Academic Press, 2010, 44: 169–305.
    [106] ADDESSIO F L, ZUO Q H, MASON T A, et al. Model for high-strain-rate deformation of uranium-niobium alloys [J]. Journal of Applied Physics, 2003, 93(12): 9644–9654. doi: 10.1063/1.1576302
    [107] CHU C, NEEDLEMAN A. Void nucleation effects in biaxially stretched sheets [J]. Journal of Engineering Materials and Technology, 1980, 102(3): 249–256. doi: 10.1115/1.3224807
    [108] ROUSSELIER G. Ductile fracture models and their potential in local approach of fracture [J]. Nuclear Engineering and Design, 1987, 105(1): 97–111. doi: 10.1016/0029-5493(87)90234-2
    [109] 陈永涛, 任国武, 汤铁钢, 等. 爆轰加载下金属样品的熔化破碎现象诊断 [J]. 物理学报, 2013, 62(11): 116202. doi: 10.7498/aps.62.116202

    CHEN Y T, REN G W, TANG T G, et al. Experimental diagnostic of melting fragments under explosive loading [J]. Acta Physica Sinica, 2013, 62(11): 116202. doi: 10.7498/aps.62.116202
    [110] SIGNOR L, DRAGON A, ROY G, et al. Dynamic fragmentation of melted metals upon intense shock wave loading. Some modeling issues applied to a tine target [J]. Archives of Mechanics, 2008, 60(4): 323–343.
  • 加载中
图(3)
计量
  • 文章访问数:  9557
  • HTML全文浏览量:  3402
  • PDF下载量:  155
出版历程
  • 收稿日期:  2018-10-22
  • 修回日期:  2019-01-10

目录

    /

    返回文章
    返回