铜粉末动态压缩行为的多颗粒有限元分析

彭克锋 潘昊 赵凯 郑志军 虞吉林

彭克锋, 潘昊, 赵凯, 郑志军, 虞吉林. 铜粉末动态压缩行为的多颗粒有限元分析[J]. 高压物理学报, 2019, 33(4): 044102. doi: 10.11858/gywlxb.20180665
引用本文: 彭克锋, 潘昊, 赵凯, 郑志军, 虞吉林. 铜粉末动态压缩行为的多颗粒有限元分析[J]. 高压物理学报, 2019, 33(4): 044102. doi: 10.11858/gywlxb.20180665
PENG Kefeng, PAN Hao, ZHAO Kai, ZHENG Zhijun, YU Jilin. Dynamic Compaction Behaviors of Copper Powders Using Multi-Particle Finite Element Method[J]. Chinese Journal of High Pressure Physics, 2019, 33(4): 044102. doi: 10.11858/gywlxb.20180665
Citation: PENG Kefeng, PAN Hao, ZHAO Kai, ZHENG Zhijun, YU Jilin. Dynamic Compaction Behaviors of Copper Powders Using Multi-Particle Finite Element Method[J]. Chinese Journal of High Pressure Physics, 2019, 33(4): 044102. doi: 10.11858/gywlxb.20180665

铜粉末动态压缩行为的多颗粒有限元分析

doi: 10.11858/gywlxb.20180665
基金项目: 科学挑战专题(TZ2018001);中央高校基本科研业务费专项资金(WK2480000003)
详细信息
    作者简介:

    彭克锋(1994-),男,博士研究生,主要从事材料动态响应数值模拟研究. E-mail: pkf@mail.ustc.edu.cn

    通讯作者:

    郑志军(1979-),男,博士,副教授,主要从事材料动态响应数值模拟研究. E-mail: zjzheng@ustc.edu.cn

  • 中图分类号: O347.5

Dynamic Compaction Behaviors of Copper Powders Using Multi-Particle Finite Element Method

  • 摘要: 颗粒金属材料的宏观力学性能与其细观特性密切相关,金属粉末的冲击压缩问题有待深入研究。选用实验结果较为丰富的铜粉末作为研究对象,基于多颗粒有限元法建立了颗粒金属材料的二维数值分析模型,研究了铜粉末在冲击压缩下的力学行为。数值计算结果表明,在较高速度冲击下颗粒金属材料呈现出高度局部化的变形带,变形带如同冲击波一样从冲击端向支撑端传播。利用速度场计算方法,计算得到了塑性冲击波波阵面的位置,进而获得了不同孔隙率(0.25~0.60)铜粉末的粒子速度与冲击波波速之间的Hugoniot关系,其在较高冲击速度(200~300 m/s)下与实验结果吻合较好。发展了以动态锁定应变为唯一参数的冲击波模型,较好地表征了铜粉末在较高速度冲击下的Hugoniot关系和波后应力。

     

  • 图  颗粒金属材料的几何模型

    Figure  1.  Geometric models of granular materials

    图  铜粉末恒速压缩的细观有限元模型(a)以及颗粒初始网格划分(b)

    Figure  2.  A finite element model of copper powders under constant-velocity compression (a) and the initial mesh of a particle (b)

    图  不同时刻试件变形图

    Figure  3.  Deformation patterns at different times

    图  不同冲击速度下试件内的一维速度(v)分布

    Figure  4.  One-dimensional velocity distribution in specimens under different impact velocities

    图  一维速度分布及其速度梯度 (V=225 m/s, t=0.4 μs, $\phi$=0.28)

    Figure  5.  One-dimensional velocity distribution and the corresponding velocity gradient (V=225 m/s, t=0.4 μs, $\phi$=0.28)

    图  不同冲击速度下冲击波位置随时间变化的关系

    Figure  6.  Variation of the shock front position with impact time at different impact velocities

    图  冲击波速度-粒子速度关系与已有文献结果对比

    Figure  7.  Comparison of the shock wave speed-particle velocity relations with the data in the literature

    图  动态应变锁定冲击波模型

    Figure  8.  Dynamic shock model with strain locked

    图  不同孔隙率的铜粉末粒子速度与冲击波速度的关系

    Figure  9.  Variation of the shock wave speed with the particle velocity at different porosity of copper powders

    图  10  不同冲击速度下冲击端应力与冲击波模型所得波后应力比较

    Figure  10.  Comparison of the stress at the impact end obtained from finite element models and the stress behind the shock wave front predicted by the shock model at different impact velocities

    图  11  不同孔隙率下冲击端应力与冲击波模型所得波后应力比较

    Figure  11.  Comparison of the stress at the impact end and the stress behind the shock wave front obtained by the shock model under different porosities

    表  1  不同孔隙率下细观模型所含颗粒数

    Table  1.   Particle numbers of mesoscale model at different porosities

    Porosity ($\phi $) Number of particles (N)
    0.60 142
    0.50 177
    0.45 195
    0.40 213
    0.35 230
    0.30 248
    0.28 255
    0.25 265
    下载: 导出CSV
  • [1] KELLY A, ZWEBEN C. Comprehensive composite materials [J]. Materials Today, 1999, 2(1): 20–21. doi: 10.1016/S1369-7021(99)80033-9
    [2] CLYNE T W, WITHERS P J. An introduction to metal matrix composites [M]. New York, NY, USA: Cambridge University Press, 1993, 1(1): 155–164.
    [3] KONDO K I, SOGA S, SAWAOKA A, et al. Shock compaction of silicon carbide powder [J]. Journal of Materials Science, 1985, 20(3): 1033–1048. doi: 10.1007/BF00585748
    [4] MORRIS D G. Bonding processes during the dynamic compaction of metallic powders [J]. Materials Science & Engineering, 1983, 57(2): 187–195.
    [5] SHAO B, LIU Z, ZHANG X. Explosive consolidation of amorphous cobalt-based alloys [J]. Journal of Materials Processing Technology, 1999, 85(1/2/3): 121–124.
    [6] CARROLL M M, HOLT A C. Static and dynamic pore-collapse relations for ductile porous materials [J]. Journal of Applied Physics, 1972, 43(4): 1626–1636. doi: 10.1063/1.1661372
    [7] BUTCHER B M, CARROLL M M, HOLT A C. Shock-wave compaction of porous aluminum [J]. Journal of Applied Physics, 1974, 45(9): 3864–3875. doi: 10.1063/1.1663877
    [8] BOADE R R. Dynamic compression of porous tungsten [J]. Journal of Applied Physics, 1969, 40(9): 3781–3785. doi: 10.1063/1.1658272
    [9] THADHANI N N, GRAHAM R A, ROYAL T, et al. Shock-induced chemical reactions in titanium-silicon powder mixtures of different morphologies: time-resolved pressure measurements and materials analysis [J]. Journal of Applied Physics, 1997, 82(3): 1113–1128. doi: 10.1063/1.365878
    [10] BOSLOUGH M B. A thermochemical model for shock-induced reactions (heat detonations) in solids [J]. Journal of Chemical Physics, 1990, 92(3): 1839–1848. doi: 10.1063/1.458066
    [11] NIEH T G, LUO P, NELLIS W, et al. Dynamic compaction of aluminum nanocrystals [J]. Acta Materialia, 1996, 44(9): 3781–3788. doi: 10.1016/1359-6454(96)83816-X
    [12] BENSON D J. An analysis by direct numerical simulation of the effects of particle morphology on the shock compaction of copper powder [J]. Modelling and Simulation in Materials Science and Engineering, 1994, 2: 535–550. doi: 10.1088/0965-0393/2/3A/008
    [13] HORIE Y, YANO K. Nonequilibrium fluctutations in shock compression of polycrystalline α-Iron [C]//AIP Conference Proceedings, 2002:553–556.
    [14] 潘昊, 王升涛, 吴子辉, 等. 孪晶对Be材料冲击加-卸载动力学影响的数值模拟研究 [J]. 物理学报, 2018, 67(16): 164601. doi: 10.7498/aps.67.20180451

    PAN H, WANG S T, WU Z H, et al. Effect of twining on dynamic behaviors of beryllium materials under impact loading and unloading [J]. Acta Physica Sinica, 2018, 67(16): 164601. doi: 10.7498/aps.67.20180451
    [15] HAN P, AN X, ZHANG Y, et al. Particulate scale MPFEM modeling on compaction of Fe and Al composite powders [J]. Powder Technology, 2016, 314: 69–77.
    [16] HUANG F, AN X, ZHANG Y, et al. Multi-particle FEM simulation of 2D compaction on binary Al/SiC composite powders [J]. Powder Technology, 2017, 314: 39–48. doi: 10.1016/j.powtec.2017.03.017
    [17] ZHANG J. A study of compaction of composite particles by multi-particle finite element method [J]. Composites Science & Technology, 2009, 69(13): 2048–2053.
    [18] HERRMANN W. Constitutive equation for the dynamic compaction of ductile porous materials [J]. Journal of Applied Physics, 1969, 40(6): 2490–2499. doi: 10.1063/1.1658021
    [19] CARROLL M M, KIM K T, NESTERENKO V F. The effect of temperature on viscoplastic pore collapse [J]. Journal of Applied Physics, 1986, 59(6): 1962–1967. doi: 10.1063/1.336426
    [20] JOHNSON J N. Dynamic fracture and spallation in ductile solids [J]. Journal of Applied Physics, 1981, 52(4): 2812–2825. doi: 10.1063/1.329011
    [21] MOLINARI A, MERCIER S. Micromechanical modelling of porous materials under dynamic loading [J]. Journal of the Mechanics & Physics of Solids, 2001, 49(7): 1497–1516.
    [22] ZAVALIANGOS A. A multiparticle simulation of powder compaction using finite element discretization of individual particles [J]. MRS Online Proceedings Library Archive, 2002: 731.
    [23] ZHANG Y X, AN X Z, ZHANG Y L. Multi-particle FEM modeling on microscopic behavior of 2D particle compaction [J]. Applied Physics A, 2015, 118(3): 1015–1021. doi: 10.1007/s00339-014-8861-x
    [24] XIN X J, JAYARAMAN P, JIANG G, et al. Explicit finite element method simulation of consolidation of monolithic and composite powders [J]. Metallurgical & Materials Transactions A, 2002, 33(8): 2649–2658.
    [25] JOHNSON G R, COOK W H. Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures [J]. Engineering Fracture Mechanics, 1985, 21(1): 31–48. doi: 10.1016/0013-7944(85)90052-9
    [26] ABAQUS. Abaqus 6.11 analysis user’s manuals [M]. Rising Sun Mills, USA: Dassault Systmes, 2011.
    [27] BOADE R R. Principal Hugoniot, second-shock Hugoniot, and release behavior of pressed copper powder [J]. Journal of Applied Physics, 1970, 41(11): 4542–4551. doi: 10.1063/1.1658494
    [28] BENSON D J. The calculation of the shock velocity-particle velocity relationship for a copper powder by direct numerical simulation [J]. Wave Motion, 1995, 21(1): 85–99. doi: 10.1016/0165-2125(94)00044-6
    [29] BORG J P, VOGLER T J. Aspects of simulating the dynamic compaction of a granular ceramic [J]. Modelling & Simulation in Materials Science & Engineering, 2009, 17(4): 045003.
    [30] WANG L L. Foundations of stress waves [M]. Amsterdam: Elsevier Science Ltd., 2007.
  • 加载中
图(11) / 表(1)
计量
  • 文章访问数:  7244
  • HTML全文浏览量:  3864
  • PDF下载量:  49
出版历程
  • 收稿日期:  2018-10-18
  • 修回日期:  2018-11-23

目录

    /

    返回文章
    返回