Interface Compression Technique in PPM
-
摘要: 高精度多组分分段抛物线法(Piecewise Parabolic Method,PPM)在对可压缩多相流问题进行模拟计算时,在不同组分交界面上存在界面扩散。为此,通过引入包含界面压缩和密度修正的人工界面压缩方法,抑制界面扩散现象。采用一个界面函数表示运动的物质界面,在多组分质量守恒方程和输运方程中添加考虑人工压缩和人工黏性的压缩源项,并在伪时间内采用二阶中心差分法和两步Runge-Kutta方法进行离散求解,采用Strang型分裂格式实现了整体算法的时间二阶精度。一维与二维数值模拟试验表明,结合人工界面压缩之后的PPM能有效抑制界面上数值扩散问题,在长时间的数值模拟中,人工界面压缩能够将扩散界面厚度维持在一定网格之内且保持界面形状不改变,尤其对于涉及稀疏波的问题,如激波引起的水中气泡坍塌,界面压缩效果更为显著。Abstract: This paper describes an artificial interface compression technique for the multi-fluid piecewise parabolic method (PPM). The proposed approach enables the simulation of interfaces between compressible multi-fluid flows with high density ratios and strong shock waves. A compression source term incorporated both interface compression and density correction is added to the mass conservation equation. The compression source term is solved in pseudo-time steps using the interface compression technique and the advection part is solved by multi-fluid PPM. The Strang splitting algorithm achieves second-order accuracy by combining the solutions of the advection operator and the interface compression operator. Numerical tests on the interaction of shock waves with interfaces in compressible multi-fluid flows reveal that multi-fluid PPM combined with the artificial interface compression technique can effectively prevent the smearing phenomenon, which is often observed at the contact interface. For long-time simulations, artificial interface compression with interface sharpening can constrain the thickness of the diffused interface to a few cells and maintain the interface profile. This artificial interface compression technique works well with multi-fluid PPM and the effect is obvious. It is a significant step in the accurate simulation of the collapse of air cavities in water, which involves strong rarefaction waves.
-
表 1 水中气泡塌陷问题中状态方程参数及初始参数
Table 1. Equation of state parameters and the initial time data of an air cavity collapse in water
Material ρ/(kg·m–3) p/Pa u/(m·s–1) v/(m·s–1) γ Water (Post-shock) 1.325 1.915×104 68.52 0 4.4 Water (Pre-shock) 1 1 0 0 4.4 Air 0.001 1 0 0 1.4 表 2 空气-R22气柱相互作用问题中的状态方程参数及初始参数
Table 2. Equation of state parameters and the initial time data of air-R22 shock-cylinder interaction
Material ρ/(kg·m–3) p/MPa u/(m·s–1) v/(m·s–1) γ Air (Post-shock) 1.686 0.159 –113.5 0 1.400 Air (Pre-shock) 1.225 0.101 0 0 1.400 R22 3.863 0.101 0 0 1.249 -
[1] MESHKOV E E. Instability of the interface of two gases accelerated by a shock wave [J]. Fluid Dynamics, 1969, 4(5): 101–104. [2] BROUILLETTE M. The Richtmyer-Meshkov Instability [J]. Annual Review of Fluid Mechanics, 2002, 34(34): 445–468. [3] LOMBARDINI M, PULLIN D I, MEIRON D I. Turbulent mixing driven by spherical implosions (Part 1): flow description and mixing-layer growth [J]. Journal of Fluid Mechanics, 2014, 748(2): 85–112. [4] LOMBARDINI M, PULLIN D I, MEIRON D I. Turbulent mixing driven by spherical implosions (Part 2): turbulence statistics [J]. Journal of Fluid Mechanics, 2014, 748(10): 113–142. [5] CLEMENS N T, MUNGAL M G. Large-scale structure and entrainment in the supersonic mixing layer [J]. Journal of Fluid Mechanics, 1995, 284(284): 171–216. [6] KAWAI S, LELE S K. Large-eddy simulation of jet mixing in supersonic crossflows [J]. American Institute of Aeronautics and Astronautics, 2010, 48(9): 2063–2083. doi: 10.2514/1.J050282 [7] JOHNSEN E, COLONIUS T. Shock-induced collapse of a gas bubble in shockwave lithotripsy [J]. The Journal of the Acoustical Society of America, 2008, 124(4): 2011–2020. doi: 10.1121/1.2973229 [8] KLASEBOER E, HUNG K C, WANG C, et al. Experimental and numerical investigation of the dynamics of an underwater explosion bubble near a resilient/rigid structure [J]. Journal of Fluid Mechanics, 2005, 537(537): 387–413. [9] RANJAN D, OAKLEY J, BONAZZA R. 3D shock-bubble interactions [J]. Physics of Fluids, 2013, 25(9): 117–140. [10] THEOFANOUS T G. Aerobreakup of newtonian and viscoelastic liquids [J]. Annual Review of Fluid Mechanics, 2011, 43(1): 661–690. doi: 10.1146/annurev-fluid-122109-160638 [11] COLELLA P, WOODWARD P R. The piecewise parabolic method (PPM) for gas-dynamical simulations [J]. Journal of Computational Physics, 1984, 54(1): 174–201. doi: 10.1016/0021-9991(84)90143-8 [12] 马东军, 孙德军, 尹协远. 高密度比多介质可压缩流动的PPM方法 [J]. 计算物理, 2001, 18(6): 517–522. doi: 10.3969/j.issn.1001-246X.2001.06.008MA D J, SUN D J, YIN X Y. Piecewise parabolic method for compressible flows of multifluids with high density ratios [J]. Chinese Journal of Computational Physics, 2001, 18(6): 517–522. doi: 10.3969/j.issn.1001-246X.2001.06.008 [13] BAI J S, WANG B, WANG T, et al. Numerical simulation of the Richtmyer-Meshkov instability in initially nonuniform flows and mixing with reshock [J]. Physical Review E, 2012, 86(6): 066319. doi: 10.1103/PhysRevE.86.066319 [14] BAI J S, ZOU L Y, WANG T, et al. Experimental and numerical study of shock-accelerated elliptic heavy gas cylinders [J]. Physical Review E, 2011, 82(2): 056318. [15] XIAO J X, BAI J S, WANG T. Numerical study of initial perturbation effects on Richtmyer-Meshkov instability in nonuniform flows [J]. Physical Review E, 2016, 94(1): 013112. doi: 10.1103/PhysRevE.94.013112 [16] SHYUE K M. A fluid-mixture type algorithm for compressible multicomponent flow with van der Waals equation of state [J]. Journal of Computational Physics, 1999, 156(1): 43–88. doi: 10.1006/jcph.1999.6349 [17] SHYUE K M. An efficient shock-capturing algorithm for compressible multicomponent problems [J]. Journal of Computational Physics, 1998, 142(1): 208–242. doi: 10.1006/jcph.1998.5930 [18] ALLAIRE G, CLERC S, KOKH S. A five-equation model for the simulation of interfaces between compressible fluids [J]. Journal of Computational Physics, 2002, 181(2): 577–616. doi: 10.1006/jcph.2002.7143 [19] JOHNSEN E, COLONIUS T. Implementation of WENO schemes in compressible multicomponent flow problems [J]. Journal of Computational Physics, 2006, 219(2): 715–732. doi: 10.1016/j.jcp.2006.04.018 [20] KOKH S, ALLAIRE G. Numerical simulation of 2-D two-phase flows with interface [C]//TORO E F. Godunov Methods.Boston, MA: Springer, 2001: 513–518. [21] II S, XIE B, XIAO F. An interface capturing method with a continuous function: the THINC method on unstructured triangular and tetrahedral meshes [J]. Journal of Computational Physics, 2014, 259: 260–269. [22] SHYUE K M, XIAO F. An Eulerian interface sharpening algorithm for compressible two-phase flow: the algebraic THINC approach [J]. Journal of Computational Physics, 2014, 268(2): 326–354. [23] XIAO F, HONMA Y, KONO T. A simple algebraic interface capturing scheme using hyperbolic tangent function [J]. International Journal for Numerical Methods in Fluids, 2005, 48(9): 1023–1040. doi: 10.1002/fld.975 [24] XIAO F, II S, CHEN C. Revisit to the THINC scheme: a simple algebraic VOF algorithm [J]. Journal of Computational Physics, 2011, 230(19): 7086–7092. doi: 10.1016/j.jcp.2011.06.012 [25] KOKH S, LAGOUTIÈRE F. An anti-diffusive numerical scheme for the simulation of interfaces between compressible fluids by means of a five-equation model [J]. Journal of Computational Physics, 2010, 229(8): 2773–2809. doi: 10.1016/j.jcp.2009.12.003 [26] FRIESS M B, KOKH S. Simulation of sharp interface multi-material flows involving an arbitrary number of components through an extended five-equation model [J]. Journal of Computational Physics, 2014, 273(273): 488–519. [27] DELIGANT M, SPECKLIN M, KHELLADI S. A naturally anti-diffusive compressible two phases Kapila model with boundedness preservation coupled to a high order finite volume solver [J]. Computers and Fluids, 2015, 114(1): 265–273. [28] OLSSON E, KREISS G, ZAHEDI S. A conservative level set method for two phase flow II [J]. Journal of Computational Physics, 2007, 225(1): 785–807. doi: 10.1016/j.jcp.2006.12.027 [29] SHUKLA R K, PANTANO C, FREUND J B. An interface capturing method for the simulation of multi-phase compressible flows [J]. Journal of Computational Physics, 2010, 229(19): 7411–7439. doi: 10.1016/j.jcp.2010.06.025 [30] SHUKLA R K. Nonlinear preconditioning for efficient and accurate interface capturing in simulation of multicomponent compressible flows [J]. Journal of Computational Physics, 2014, 276(1): 508–540. [31] FREUND J B, SHUKLA R K, EVAN A P. Shock-induced bubble jetting into a viscous fluid with application to tissue injury in shock-wave lithotripsy [J]. The Journal of the Acoustical Society of America, 2009, 126(5): 2746–2756. doi: 10.1121/1.3224830 [32] SHU C W. Essentially non-oscillatory and weighted essentially non-oscillatory schemes for hyperbolic conservation laws [C]//QUARTERONI A. Advanced Numerical Approximation of Nonlinear Hyperbolic Equations: Lecture Notes in Mathematics (Vol.1697). Berlin, Heidelberg: Springer, 1998: 325–432. [33] NOURGALIEV R R, DINH T N, THEOFANOUS T G. Adaptive characteristics-based matching for compressible multifluid dynamics [J]. Journal of Computational Physics, 2006, 213(2): 500–529. doi: 10.1016/j.jcp.2005.08.028 [34] HU X Y, KHOO B C. An interface interaction method for compressible multifluids [J]. Journal of Computational Physics, 2004, 198(1): 35–64. doi: 10.1016/j.jcp.2003.12.018 [35] SHYUE K M. A wave-propagation based volume tracking method for compressible multicomponent flow in two space dimensions [J]. Journal of Computational Physics, 2006, 215(1): 219–244. doi: 10.1016/j.jcp.2005.10.030 [36] HAAS J F, STURTEVANT B. Interaction of weak shock waves with cylindrical and spherical gas inhomogeneities [J]. Journal of Fluid Mechanics, 1987, 181(1): 41–76.