材料参数拟合方法对弹靶侵彻仿真的影响

伍星星 刘建湖 张伦平 赵延杰 孟利平 陈江涛

伍星星, 刘建湖, 张伦平, 赵延杰, 孟利平, 陈江涛. 材料参数拟合方法对弹靶侵彻仿真的影响[J]. 高压物理学报, 2019, 33(4): 045105. doi: 10.11858/gywlxb.20180661
引用本文: 伍星星, 刘建湖, 张伦平, 赵延杰, 孟利平, 陈江涛. 材料参数拟合方法对弹靶侵彻仿真的影响[J]. 高压物理学报, 2019, 33(4): 045105. doi: 10.11858/gywlxb.20180661
WU Xingxing, LIU Jianhu, ZHANG Lunping, ZHAO Yanjie, MENG Liping, CHEN Jiangtao. Influence of Different Material Constants Fitting Method on Predicting Warhead Impacting Metal Targets[J]. Chinese Journal of High Pressure Physics, 2019, 33(4): 045105. doi: 10.11858/gywlxb.20180661
Citation: WU Xingxing, LIU Jianhu, ZHANG Lunping, ZHAO Yanjie, MENG Liping, CHEN Jiangtao. Influence of Different Material Constants Fitting Method on Predicting Warhead Impacting Metal Targets[J]. Chinese Journal of High Pressure Physics, 2019, 33(4): 045105. doi: 10.11858/gywlxb.20180661

材料参数拟合方法对弹靶侵彻仿真的影响

doi: 10.11858/gywlxb.20180661
基金项目: 国家安全重大基础研究计划(613305);国防基础科研计划(JCKY2017207B054)
详细信息
    作者简介:

    伍星星(1989-),男,工程师,主要从事舰船抗爆抗冲击研究. E-mail:xingxingwupy@163.com

  • 中图分类号: O385

Influence of Different Material Constants Fitting Method on Predicting Warhead Impacting Metal Targets

  • 摘要: 弹靶侵彻仿真中材料参数对计算结果有着至关重要的影响。为寻求一套适用于弹靶侵彻仿真计算的材料参数拟合方法,借助前期开展的靶板材料动态力学性能试验、靶板材料断裂试验,通过不同拟合方法依次得到不同的JC本构模型及失效模型参数,依据试验建立有限元计算模型,将数值计算结果与试验结果进行对比。结果表明:(1)对于同一材料的力学性能试验,采用不同的拟合方法可得到不同的JC本构、JC失效参数,二者会对弹靶仿真结果造成一定影响;(2)在不考虑温度软化项的前提下,采用高应变率作为参考应变率进行拟合能更加准确地表征材料在高应变率下的应力-应变关系,更加适用于弹靶侵彻强瞬态、高应变率作用过程仿真;(3)对于同一JC本构模型,采用平均应力三轴度拟合的JC失效模型较采用初始应力三轴度拟合的JC失效模型所得战斗部剩余速度计算结果偏小,仅采用拉伸试件结果拟合的JC失效模型较采用扭转、拉伸试件结果拟合的JC失效模型所得战斗部剩余速度计算结果偏小。

     

  • 图  不同试验机的试件(单位:mm)

    Figure  1.  Different specimen size (Unit: mm)

    图  不同应变率下Q345B钢的应力-应变曲线

    Figure  2.  Stress-strain curves of Q345B steel under different strain rates

    图  不同参考应变率拟合下Q345B钢的应力-应变曲线对比

    Figure  3.  Fitting curves of Q345B steel by different reference strain rates

    图  不同参考应变率拟合下Q345B钢能量吸收密度曲线对比

    Figure  4.  Energy density curves comparisons of Q345B steel under different reference strain rates

    图  不同应力三轴度试件

    Figure  5.  Specimen of different stress triaxiality

    图  不同拟合方法得到的Q345B钢JC失效模型曲线对比

    Figure  6.  Comparison of JC failure model curves forQ345B steel under different fitting methods

    图  Q345B钢JC失效参数拟合曲线对比(仅考虑拉伸试件试验结果)

    Figure  7.  Comparison of JC failure model curves for Q345B steel under different fitting methods (only considering tensile specimen)

    图  战斗部穿甲有限元计算模型

    Figure  8.  Finite element model of warhead penetrating metal targets

    表  1  不同试件类型失效应变取值

    Table  1.   Failure strain of different specimens

    Specimen Stress triaxiality Failure strain ${\varepsilon _{\rm{f}}}$
    Initial stress triaxiality Average stress triaxiality
    Compression –0.333
    Torsion 0.000 0.0006 1.340
    Smooth 0.333 0.562 1.273
    R=18 mm 0.413 0.663 1.140
    R=8 mm 0.505 0.752 1.045
    R=6 mm 0.556 0.805 0.990
    R=2 mm 0.893 1.085 0.791
    下载: 导出CSV

    表  2  JC失效模型参数拟合结果

    Table  2.   JC failure model constants

    Model Stress triaxiality D1 D2 D3 Remarks
    JC-F-1 Initial –0.0910 1.5326 –0.6963 See Fig. 6
    JC-F-2 Average –6.3470 7.7860 –0.0870 See Fig. 6
    JC-F-3 Initial 0.6977 2.7811 –4.5976 See Fig. 7
    JC-F-4 Average 0.6415 5.0578 –3.6146 See Fig. 7
    下载: 导出CSV

    表  3  尖头战斗部穿甲8 mm厚Q345B钢金属板仿真计算结果与试验结果对比

    Table  3.   Comparison between experimental results and simulation results for sharp nosed warhead penetrating 8 mm thick Q345B steel targets

    Material model Impact velocity/(m·s–1) Residual velocity/(m·s–1)
    Strength model Failure model Experiment Simulation
    Low reference strain rate JC-F-1 208 185 180
    Low reference strain rate JC-F-2 208 185 177
    High reference strain rate JC-F-1 208 185 184
    High reference strain rate JC-F-2 208 185 183
    Low reference strain rate JC-F-3 208 185 180
    Low reference strain rate JC-F-4 208 185 174
    High reference strain rate JC-F-3 208 185 182
    High reference strain rate JC-F-4 208 185 178
    下载: 导出CSV

    表  4  尖头战斗部穿甲15 mm厚Q345B钢金属板仿真计算结果与试验结果对比

    Table  4.   Comparison between experimental results and simulation results for sharp nosed warhead penetrating 15 mm thick Q345B steel targets

    Material model Impact velocity/(m·s–1) Residual velocity/(m·s–1)
    Strength model Failure model Experiment Simulation
    Low reference strain rate JC-F-1 273 216 204
    Low reference strain rate JC-F-2 273 216 202
    High reference strain rate JC-F-1 273 216 212
    High reference strain rate JC-F-2 273 216 212
    Low reference strain rate JC-F-3 273 216 194
    Low reference strain rate JC-F-4 273 216 181
    High reference strain rate JC-F-3 273 216 201
    High reference strain rate JC-F-4 273 216 194
    下载: 导出CSV

    表  5  钝头战斗部穿甲15 mm厚Q345B钢金属板仿真计算结果与试验结果对比

    Table  5.   Comparison between experimental results and simulation results for blunt warhead penetrating 15 mm thick Q345B steel targets

    Material model Impact velocity/(m·s–1) Residual velocity/(m·s–1)
    Strength model Failure model Experiment Simulation
    Low reference strain rate JC-F-1 273 163 75
    Low reference strain rate JC-F-2 273 163 50
    High reference strain rate JC-F-1 273 163 174
    High reference strain rate JC-F-2 273 163 172
    Low reference strain rate JC-F-3 273 163 55
    Low reference strain rate JC-F-4 273 163 0
    High reference strain rate JC-F-3 273 163 171
    High reference strain rate JC-F-4 273 163 156
    下载: 导出CSV
  • [1] SCHEFFER D R, ZUKA J A. Practical aspects of numerical simulation of dynamic events material interfaces [J]. International Journal of Impact Engineering, 2000, 24(8): 821–842. doi: 10.1016/S0734-743X(00)00003-8
    [2] ZUKA J A. Practical aspects of numerical simulations of dynamic events: effects of meshing [J]. International Journal of Impact Engineering, 2000, 24(9): 925–945. doi: 10.1016/S0734-743X(00)00012-9
    [3] JOHNSON G R, COOK W H. A constitutive model and data for metals subjected to large strains, high strains rates and high temperature [C]//Proceedings of the Seventh International Symposium on Ballistics. Netherland, 1983.
    [4] BØRVIK T, HOPPERSTAD O S, BERSTAD T, et al. A computational model of viscoplasticity and ductile damage for impact and penetration [J]. European Journal of Mechanics Solids, 2001, 20(5): 685–712. doi: 10.1016/S0997-7538(01)01157-3
    [5] GUPTA N K, IQBAL M A. Experiment and numerical studies on the behavior of thin aluminum plates subjected to impact by blunt and hemispherical-nosed projectile [J]. International Journal of Impact Engineering, 2006, 32(12): 1921–1944. doi: 10.1016/j.ijimpeng.2005.06.007
    [6] BØRVIK T, HOPPERSTAD O S. Numerical simulation of plugging failure in ballistic penetration [J]. International Journal of Solids and Structures, 2001, 38(25): 6241–6264.
    [7] BAO Y B, WIERZBICKI T. On fracture locus in the equivalent strain and stress triaxiality space [J]. International Journal of Mechanical Sciences, 2004, 46(12): 81–98.
    [8] GILIOLI A, WIERZBICKI T. Predicting ballistic impact failure of aluminium 6061-T6 with the rate-independent Bao-Wierzbicki fracture model [J]. International Journal of Impact Engineering, 2015, 76(15): 207–220.
    [9] TENG X, WIERZBICKI T. Evaluation of six fracture models in high velocity perforation [J]. Engineering Fracture Mechanics, 2016, 73(12): 1653–1678.
    [10] 陈刚. 半穿甲战斗部弹体穿甲效应数值模拟和实验研究[D]. 绵阳: 中国工程物理研究院, 2006.

    CHEN G. Numerical and experimental investigation on penetration effects of semi-armor-piercing warhead [D]. Mianyang: China Academy of Engineering Physics, 2006.
    [11] 姚熊亮, 徐小刚. 船用917钢抗冲击性能试验 [J]. 中国造船, 2004, 45(4): 35–41. doi: 10.3969/j.issn.1000-4882.2004.04.006

    YAO X L, XU X G. The experiment research of steel 917 under impact load [J]. Ship Building of China, 2004, 45(4): 35–41. doi: 10.3969/j.issn.1000-4882.2004.04.006
    [12] 李营. 液舱防爆炸破片侵彻作用机理研究 [D]. 武汉: 武汉理工大学, 2014.

    LI Y. Study of anti-blast fragment penetration mechanism in liquid tank [D]. Wuhan: Wuhan University of Technology, 2014.
    [13] 伍星星, 孟利平, 刘建湖, 等. 大质量战斗部穿甲数值仿真对材料断裂极限参数确定分析[C]//第十五届战斗部与毁伤会议集. 北京, 2017.

    WU X X, MENG L P, LIU J H, et al. Parameter determination analysis of material fracture limit by numerical simulation armor piercing in mass warhead [C]//The 15th Warhead Damage Conference. Beijing, 2017.
    [14] BØRVIK T, HOPPERSTAD O S. On the influence of stress triaxiality and strain rate on the behavior of a structural steel. Part II. numerical study [J]. European Journal of Mechanics A-Solids, 2003, 22(1): 15–32. doi: 10.1016/S0997-7538(02)00005-0
    [15] 陈继恩. 基于应力三轴度的材料失效研究 [D]. 武汉: 华中科技大学, 2012.

    CHEN J E. Research of material failure basic on stress triaxiality [D]. Wuhan: Huazhong University of Science and Technology, 2012.
    [16] 孟利平. 应变率和应力三轴度对船用钢变形和断裂的影响研究 [D]. 无锡: 中国船舶科学研究中心, 2016.

    MENG L P. Study on the influence of strain rate and stress triaxiality on deformation and fracture of marine steel [D]. Wuxi: China Ship Science Research Center, 2016.
    [17] 谢凡, 张涛, 陈继恩, 等. 应力三轴度的有限元计算修正 [J]. 爆炸与冲击, 2012, 32(1): 8–14. doi: 10.3969/j.issn.1001-1455.2012.01.002

    XIE F, ZHANG T, CHEN J E, et al. Updating of the stress triaxiality by finite element analysis [J]. Explosion and Shock Waves, 2012, 32(1): 8–14. doi: 10.3969/j.issn.1001-1455.2012.01.002
    [18] 伍星星, 张伦平, 刘建湖, 等. 不同类型战斗部穿甲不同金属板试验与理论分析 [C]//第十五届战斗部与毁伤会议集. 北京, 2017.

    WU X X, ZHANG L P, LIU J H, et al. Experimental and theory analysis on different nosed warhead penetrating different thickness metal [C]//The 15th Warhead Damage Conference. Beijing, 2017.
  • 加载中
图(8) / 表(5)
计量
  • 文章访问数:  8010
  • HTML全文浏览量:  3932
  • PDF下载量:  55
出版历程
  • 收稿日期:  2018-10-16
  • 修回日期:  2019-01-17

目录

    /

    返回文章
    返回