Experimental Study of Ballistic Performance for Boron Carbide Ceramic Composite Targets
-
摘要: 为研究碳化硼陶瓷的抗侵彻性能,开展了
$ \varnothing$ 12.7 mm钢球侵彻碳化硼陶瓷及复合靶板、12.7 mm长杆弹侵彻超高分子量聚乙烯纤维(UHMWPE)约束碳化硼陶瓷复合靶板实验,讨论了碳化硼陶瓷的破坏模式,研究了约束方式对碳化硼陶瓷抗侵彻性能的影响。结果表明:在钛合金/UHMWPE背板约束作用下,弹丸与陶瓷的相互作用时间更长,产生更细的陶瓷粉末,大尺寸碎片含量减少,吸收的能量更多,陶瓷的抗侵彻性能进一步提高;背板在弹体和陶瓷锥的共同冲击下,造成钛合金的花瓣形卷边破坏,UHMWPE层合板伴随着较大范围的层间分层,形成“X”形隆起现象;采用纤维约束陶瓷,使碳化硼陶瓷板在子弹侵彻时能够保持完整,增强了对弹体的磨蚀作用,提高了抗弹性能,具有一定的抗多次打击能力。通过分析碳化硼陶瓷复合装甲的抗侵彻机理,为今后复合装甲的优化设计提供了参考依据。-
关键词:
- 碳化硼陶瓷 /
- 侵彻 /
- 陶瓷复合靶板 /
- 超高分子量聚乙烯纤维 /
- 三维约束
Abstract: In order to investigate the ballistic performance of boron carbide ceramics, we carried out experiments of a${\varnothing}$ 12.7 mm steel ball penetrating the boron carbide ceramic and composite target, and a 12.7 mm long-rod projectile penetrating the boron carbide ceramic composite target constrained by the ultrahigh molecular weight polyethylene (UHMWPE) fibers. In the experiments, the failure mode of boron carbide ceramics was discussed, and the influence of the constraint mode of ballistic performance on boron carbide ceramics was studied. The results show that under the constraint of titanium alloy/UHMWPE backing plate, the interaction time between projectile and ceramic is longer, which could create finer ceramic powder and decrease the size of fragments. Hence, as the carbide ceramics absorb more energy, it could achieve better ballistic performance. As the result of the combination of the projectile and the ceramic cone, the titanium alloy back plate was damaged, forming the petal shape. And the UHMWPE laminate is accompanied by a large-scale interlayer delamination, forming an " X”-shaped bulging phenomenon. The fiber-constrained ceramics enable the boron carbide ceramic plate to remain intact when the bullet penetrates, enhance the abrasive effect on the projectile, improve the elastic resistance, and have a certain resistance against multiple impacts. Besides, the anti-penetration mechanism of boron carbide ceramic composite armor has also been analyzed, and we hope this paper can help with the optimization design of composite armor in the future. -
表 1 弹头及靶板材料的性能参数
Table 1. Mechanical properties of projectiles and targets
Material ρ/(g·cm–3) E/GPa Poisson’s ratio Tensile strength/MPa Yield strength/MPa GCr15 steel 7.83 217 0.3 861.3 518.4 TC4 4.45 114 0.3 1000±50 UHMWPE fibers 0.97 124 3340 Material ρ/(g·cm–3) E/GPa Compressive strength/GPa Fracture toughness/(MPa·m1/2) Vickers hardness/GPa B4C 2.51 450 1.96 2.6 ± 0.15 24.5±1.0 表 2 靶板结构和实验结果(
${\varnothing} $ 12.7 mm钢球)Table 2. Targets construction and experimental results (
${\varnothing} $ 12.7 mm projectile)Target No. Target structure Area density/
(kg·m–2)Thickness/
mmMass/
gInitial
velocity/(m·s–1)Residual
velocity/(m·s–1)Damage A1 B4C/TC4/UHMWPE/TC4 47.6 18.54 8.36 1194.2 Unpenetrated A2 B4C/TC4/UHMWPE/TC4 47.9 18.55 8.36 1044.5 Unpenetrated A3 B4C/TC4/UHMWPE/TC4 47.2 18.63 8.36 947.4 Unpenetrated A4 B4C/TC4/UHMWPE/TC4 47.6 18.82 8.36 890.0 Unpenetrated B1 TC4/UHMWPE 31.5 17.91 8.36 1284.8 805.3 Penetrated B2 TC4/UHMWPE 32.6 17.84 8.36 1061.8 716.7 Penetrated B3 TC4/UHMWPE 30.7 17.91 8.36 958.1 574.5 Penetrated B4 TC4/UHMWPE 32.7 17.85 8.36 940.5 478.3 Penetrated C1 B4C ceramics 32.0 10.06 8.36 1244.0 840.0 Penetrated C2 B4C ceramics 32.0 10.06 8.36 1136.6 520.2 Penetrated C3 B4C ceramics 32.0 10.05 8.36 1050.0 507.7 Penetrated C4 B4C ceramics 31.9 10.03 8.36 1139.6 570.0 Penetrated 表 3 靶板结构和实验结果(12.7 mm长杆弹)
Table 3. Targets construction and experimental results (12.7 mm long-rod projectile)
Target No. Target structure Projectile mass/g Projectile velocity/(m·s–1) Damage 1 B4C/20 mm aluminum plate 24.90 618.1 Unpenetrated 2 Fiber constrained plan 1/20 mm aluminum plate 24.85 643.5 Penetrated 3 Fiber constrained plan 2/20 mm aluminum plate 24.99 630.2 Penetrated 4 Fiber constrained plan 1/20 mm aluminum plate 24.96 658.2 Penetrated 5 B4C/20 mm steel place 24.97 641.4 Unpenetrated 6 Fiber constrained plan 1/20 mm steel place 24.96 622.8 Unpenetrated -
[1] SAVIO S G, RAMANJANEYULU K, MADHU V, et al. An experimental study on ballistic performance of boron carbide tiles [J]. International Journal of Impact Engineering, 2011, 38(7): 535–541. doi: 10.1016/j.ijimpeng.2011.01.006 [2] 孙川. B4C基复相陶瓷材料的制备、性能研究及抗弹能力测试 [D]. 北京: 北京理工大学, 2015: 17–45.SUN C. Preparation, properties and ballistic performance test of B4C matrix composite ceramic [D]. Beijing: Beijing Institute of Technology, 2015: 17–45. [3] 苏罗川, 宜晨虹, 刘文杰, 等. 轻质抗侵彻材料及结构研究现状 [J]. 兵器装备工程学报, 2018, 39(1): 157–167. doi: 10.11809/bqzbgcxb2018.01.034SU L C, YI C H, LIU W J, et al. Development of lightweight ballistic armor materials and structures [J]. Journal of Ordnance Equipment Engineering, 2018, 39(1): 157–167. doi: 10.11809/bqzbgcxb2018.01.034 [4] 马丽. TiB2基复相陶瓷制备及抗侵彻性能研究 [D]. 济南: 山东大学, 2018: 15–36. [5] 任彦. 抗弹陶瓷在复合装甲中的应用 [J]. 新材料产业, 2016(1): 17–20. doi: 10.3969/j.issn.1008-892X.2016.01.005 [6] 曾毅, 赵宝荣. 装甲防护材料技术 [M]. 北京: 国防工业出版社, 2014: 75–110. [7] 钱伟长. 穿甲力学 [M]. 北京: 国防工业出版社, 1984: 6–18. [8] ROSENBERG Z, DEKEL E. 终点弹道学 [M]. 钟方平, 译. 北京: 国防工业出版社, 2014: 193–235. [9] MADHU V, RAMANJANEYULU K, BALAKRISHNA B, et al. An experimental study of penetration resistance of ceramic amour subjected to projectile impact [J]. International Journal of Impact Engineering, 2005, 32(1): 337–350. [10] 孙娟, 黄小忠, 杜作娟, 等. 约束机制对陶瓷复合靶抗弹性能的影响 [J]. 中南大学学报(自然科学版), 2011, 42(11): 3331–3335.SUN J, HUANG X Z, DU Z J, et al. Effect of confinement mechanism on performance of ceramic composite targets [J]. Journal of Central South University (Science and Technology), 2011, 42(11): 3331–3335. [11] 宜晨虹, 胡美娥, 谷岩. 93钨破片高速侵彻陶瓷/铝合金复合结构实验研究 [J]. 兵器材料科学与工程, 2013, 36(3): 17–19. doi: 10.3969/j.issn.1004-244X.2013.03.006YI C H, HU M E, GU Y. High velocity penetration of ceramic/aluminum composite structure by 93 tungsten fragment [J]. Ordnance Material Science and Engineering, 2013, 36(3): 17–19. doi: 10.3969/j.issn.1004-244X.2013.03.006 [12] 罗通. 纤维约束陶瓷复合靶板的制备及抗弹性能研究 [D]. 北京: 北京理工大学, 2015: 12–55.LUO T. Study on preparation process and anti-ballistic properties of ceramic composite targets confined by fiber [D]. Beijing: Beijing Institute of Technology, 2015: 12–55.