碳化硼陶瓷复合靶板抗侵彻性能实验研究

任文科 高光发 朴春华 张扬 徐同昆 赵斌

任文科, 高光发, 朴春华, 张扬, 徐同昆, 赵斌. 碳化硼陶瓷复合靶板抗侵彻性能实验研究[J]. 高压物理学报, 2019, 33(4): 045104. doi: 10.11858/gywlxb.20180657
引用本文: 任文科, 高光发, 朴春华, 张扬, 徐同昆, 赵斌. 碳化硼陶瓷复合靶板抗侵彻性能实验研究[J]. 高压物理学报, 2019, 33(4): 045104. doi: 10.11858/gywlxb.20180657
REN Wenke, GAO Guangfa, PIAO Chunhua, ZHANG Yang, XU Tongkun, ZHAO Bin. Experimental Study of Ballistic Performance for Boron Carbide Ceramic Composite Targets[J]. Chinese Journal of High Pressure Physics, 2019, 33(4): 045104. doi: 10.11858/gywlxb.20180657
Citation: REN Wenke, GAO Guangfa, PIAO Chunhua, ZHANG Yang, XU Tongkun, ZHAO Bin. Experimental Study of Ballistic Performance for Boron Carbide Ceramic Composite Targets[J]. Chinese Journal of High Pressure Physics, 2019, 33(4): 045104. doi: 10.11858/gywlxb.20180657

碳化硼陶瓷复合靶板抗侵彻性能实验研究

doi: 10.11858/gywlxb.20180657
基金项目: 国家自然科学基金(11472008,11772160,11202206);江苏省研究生科研与实践创新计划项目(KYCX18_0463)
详细信息
    作者简介:

    任文科(1992-),男,博士研究生,主要从事冲击动力学研究. E-mail: wenkeren@live.com

    通讯作者:

    高光发(1980-),男,教授,博士生导师,主要从事冲击动力学研究. E-mail: gfgao@ustc.edu.cn

  • 中图分类号: O385

Experimental Study of Ballistic Performance for Boron Carbide Ceramic Composite Targets

  • 摘要: 为研究碳化硼陶瓷的抗侵彻性能,开展了$ \varnothing$12.7 mm钢球侵彻碳化硼陶瓷及复合靶板、12.7 mm长杆弹侵彻超高分子量聚乙烯纤维(UHMWPE)约束碳化硼陶瓷复合靶板实验,讨论了碳化硼陶瓷的破坏模式,研究了约束方式对碳化硼陶瓷抗侵彻性能的影响。结果表明:在钛合金/UHMWPE背板约束作用下,弹丸与陶瓷的相互作用时间更长,产生更细的陶瓷粉末,大尺寸碎片含量减少,吸收的能量更多,陶瓷的抗侵彻性能进一步提高;背板在弹体和陶瓷锥的共同冲击下,造成钛合金的花瓣形卷边破坏,UHMWPE层合板伴随着较大范围的层间分层,形成“X”形隆起现象;采用纤维约束陶瓷,使碳化硼陶瓷板在子弹侵彻时能够保持完整,增强了对弹体的磨蚀作用,提高了抗弹性能,具有一定的抗多次打击能力。通过分析碳化硼陶瓷复合装甲的抗侵彻机理,为今后复合装甲的优化设计提供了参考依据。

     

  • 图  实验弹体

    Figure  1.  Experimental projectile

    图  高速摄影测量系统

    Figure  2.  High speed photography system

    图  3种碳化硼陶瓷靶板

    Figure  3.  Three kinds of B4C ceramics targets

    图  陶瓷试件与约束方案

    Figure  4.  B4C ceramics and two different designs of constrains

    图  12.7 mm长杆弹

    Figure  5.  12.7 mm long-rod projectile

    图  弹丸测速装置

    Figure  6.  Projectile speed measuring instruments

    图  钢球撞击碳化硼/钛合金/UHMWPE复合靶板过程(2×104 fps)

    Figure  7.  Penetration process of steel ball to B4C/titanium alloy/UHMWPE composite target (2×104 frames/s)

    图  钢球撞击碳化硼陶瓷靶板过程(2×104 幅/秒)

    Figure  8.  Penetration process of steel ball to B4C ceramics (2×104 frames/s)

    图  侵彻实验产生的碳化硼陶瓷碎片

    Figure  9.  Fragments of B4C ceramics in penetration experiments

    图  10  剩余速度与入射速度的关系

    Figure  10.  Relationship between residual velocity and initial velocity

    图  11  碳化硼/钛合金/UHMWPE复合靶板破坏形貌

    Figure  11.  Damage view of B4C/titanium alloy/UHMWPE composite target

    图  12  钛合金/UHMWPE复合靶板破坏形貌

    Figure  12.  Damage morphology of titanium alloy/UHMWPE composites plate

    图  13  实验前、后弹丸对比

    Figure  13.  Pictures of projectiles before and after experiment

    图  14  弹坑深度

    Figure  14.  Depth of craters

    图  15  纤维约束B4C陶瓷破坏形貌

    Figure  15.  Damage morphology of fiber constrained B4C ceramics

    表  1  弹头及靶板材料的性能参数

    Table  1.   Mechanical properties of projectiles and targets

    Material ρ/(g·cm–3) E/GPa Poisson’s ratio Tensile strength/MPa Yield strength/MPa
    GCr15 steel 7.83 217 0.3 861.3 518.4
    TC4 4.45 114 0.3 1000±50
    UHMWPE fibers 0.97 124 3340
    Material ρ/(g·cm–3) E/GPa Compressive strength/GPa Fracture toughness/(MPa·m1/2) Vickers hardness/GPa
    B4C 2.51 450 1.96 2.6 ± 0.15 24.5±1.0
    下载: 导出CSV

    表  2  靶板结构和实验结果(${\varnothing} $12.7 mm钢球)

    Table  2.   Targets construction and experimental results (${\varnothing} $12.7 mm projectile)

    Target No. Target structure Area density/
    (kg·m–2)
    Thickness/
    mm
    Mass/
    g
    Initial
    velocity/(m·s–1)
    Residual
    velocity/(m·s–1)
    Damage
    A1 B4C/TC4/UHMWPE/TC4 47.6 18.54 8.36 1194.2 Unpenetrated
    A2 B4C/TC4/UHMWPE/TC4 47.9 18.55 8.36 1044.5 Unpenetrated
    A3 B4C/TC4/UHMWPE/TC4 47.2 18.63 8.36 947.4 Unpenetrated
    A4 B4C/TC4/UHMWPE/TC4 47.6 18.82 8.36 890.0 Unpenetrated
    B1 TC4/UHMWPE 31.5 17.91 8.36 1284.8 805.3 Penetrated
    B2 TC4/UHMWPE 32.6 17.84 8.36 1061.8 716.7 Penetrated
    B3 TC4/UHMWPE 30.7 17.91 8.36 958.1 574.5 Penetrated
    B4 TC4/UHMWPE 32.7 17.85 8.36 940.5 478.3 Penetrated
    C1 B4C ceramics 32.0 10.06 8.36 1244.0 840.0 Penetrated
    C2 B4C ceramics 32.0 10.06 8.36 1136.6 520.2 Penetrated
    C3 B4C ceramics 32.0 10.05 8.36 1050.0 507.7 Penetrated
    C4 B4C ceramics 31.9 10.03 8.36 1139.6 570.0 Penetrated
    下载: 导出CSV

    表  3  靶板结构和实验结果(12.7 mm长杆弹)

    Table  3.   Targets construction and experimental results (12.7 mm long-rod projectile)

    Target No. Target structure Projectile mass/g Projectile velocity/(m·s–1) Damage
    1B4C/20 mm aluminum plate 24.90 618.1 Unpenetrated
    2 Fiber constrained plan 1/20 mm aluminum plate 24.85 643.5 Penetrated
    3 Fiber constrained plan 2/20 mm aluminum plate 24.99 630.2 Penetrated
    4 Fiber constrained plan 1/20 mm aluminum plate 24.96 658.2 Penetrated
    5 B4C/20 mm steel place 24.97 641.4 Unpenetrated
    6 Fiber constrained plan 1/20 mm steel place 24.96 622.8 Unpenetrated
    下载: 导出CSV
  • [1] SAVIO S G, RAMANJANEYULU K, MADHU V, et al. An experimental study on ballistic performance of boron carbide tiles [J]. International Journal of Impact Engineering, 2011, 38(7): 535–541. doi: 10.1016/j.ijimpeng.2011.01.006
    [2] 孙川. B4C基复相陶瓷材料的制备、性能研究及抗弹能力测试 [D]. 北京: 北京理工大学, 2015: 17–45.

    SUN C. Preparation, properties and ballistic performance test of B4C matrix composite ceramic [D]. Beijing: Beijing Institute of Technology, 2015: 17–45.
    [3] 苏罗川, 宜晨虹, 刘文杰, 等. 轻质抗侵彻材料及结构研究现状 [J]. 兵器装备工程学报, 2018, 39(1): 157–167. doi: 10.11809/bqzbgcxb2018.01.034

    SU L C, YI C H, LIU W J, et al. Development of lightweight ballistic armor materials and structures [J]. Journal of Ordnance Equipment Engineering, 2018, 39(1): 157–167. doi: 10.11809/bqzbgcxb2018.01.034
    [4] 马丽. TiB2基复相陶瓷制备及抗侵彻性能研究 [D]. 济南: 山东大学, 2018: 15–36.
    [5] 任彦. 抗弹陶瓷在复合装甲中的应用 [J]. 新材料产业, 2016(1): 17–20. doi: 10.3969/j.issn.1008-892X.2016.01.005
    [6] 曾毅, 赵宝荣. 装甲防护材料技术 [M]. 北京: 国防工业出版社, 2014: 75–110.
    [7] 钱伟长. 穿甲力学 [M]. 北京: 国防工业出版社, 1984: 6–18.
    [8] ROSENBERG Z, DEKEL E. 终点弹道学 [M]. 钟方平, 译. 北京: 国防工业出版社, 2014: 193–235.
    [9] MADHU V, RAMANJANEYULU K, BALAKRISHNA B, et al. An experimental study of penetration resistance of ceramic amour subjected to projectile impact [J]. International Journal of Impact Engineering, 2005, 32(1): 337–350.
    [10] 孙娟, 黄小忠, 杜作娟, 等. 约束机制对陶瓷复合靶抗弹性能的影响 [J]. 中南大学学报(自然科学版), 2011, 42(11): 3331–3335.

    SUN J, HUANG X Z, DU Z J, et al. Effect of confinement mechanism on performance of ceramic composite targets [J]. Journal of Central South University (Science and Technology), 2011, 42(11): 3331–3335.
    [11] 宜晨虹, 胡美娥, 谷岩. 93钨破片高速侵彻陶瓷/铝合金复合结构实验研究 [J]. 兵器材料科学与工程, 2013, 36(3): 17–19. doi: 10.3969/j.issn.1004-244X.2013.03.006

    YI C H, HU M E, GU Y. High velocity penetration of ceramic/aluminum composite structure by 93 tungsten fragment [J]. Ordnance Material Science and Engineering, 2013, 36(3): 17–19. doi: 10.3969/j.issn.1004-244X.2013.03.006
    [12] 罗通. 纤维约束陶瓷复合靶板的制备及抗弹性能研究 [D]. 北京: 北京理工大学, 2015: 12–55.

    LUO T. Study on preparation process and anti-ballistic properties of ceramic composite targets confined by fiber [D]. Beijing: Beijing Institute of Technology, 2015: 12–55.
  • 加载中
图(15) / 表(3)
计量
  • 文章访问数:  7707
  • HTML全文浏览量:  4399
  • PDF下载量:  94
出版历程
  • 收稿日期:  2018-10-15
  • 修回日期:  2019-01-07

目录

    /

    返回文章
    返回