冲击荷载下植物纤维增强高聚物复合材料的力学性能

马东方 马伯翰 张幸锵

马东方, 马伯翰, 张幸锵. 冲击荷载下植物纤维增强高聚物复合材料的力学性能[J]. 高压物理学报, 2019, 33(2): 024204. doi: 10.11858/gywlxb.20180656
引用本文: 马东方, 马伯翰, 张幸锵. 冲击荷载下植物纤维增强高聚物复合材料的力学性能[J]. 高压物理学报, 2019, 33(2): 024204. doi: 10.11858/gywlxb.20180656
MA Dongfang, MA Bohan, ZHANG Xingqiang. Mechanical Properties of Natural Fiber Reinforced Polymer Composites under Impact Loading[J]. Chinese Journal of High Pressure Physics, 2019, 33(2): 024204. doi: 10.11858/gywlxb.20180656
Citation: MA Dongfang, MA Bohan, ZHANG Xingqiang. Mechanical Properties of Natural Fiber Reinforced Polymer Composites under Impact Loading[J]. Chinese Journal of High Pressure Physics, 2019, 33(2): 024204. doi: 10.11858/gywlxb.20180656

冲击荷载下植物纤维增强高聚物复合材料的力学性能

doi: 10.11858/gywlxb.20180656
基金项目: 国家自然科学基金(11502074)
详细信息
    作者简介:

    马东方(1981-),男,博士,讲师,主要从事结构与材料动态响应研究. E-mail:madongfang@nbu.edu.cn

  • 中图分类号: O347.3

Mechanical Properties of Natural Fiber Reinforced Polymer Composites under Impact Loading

  • 摘要: 植物纤维代替人造纤维作为填充体的增强高聚物复合材料可用于汽车、航空航天等工业。选用一定含量的植物纤维及其他填充材料增强高聚物复合材料,在万能材料试验机和分离式霍普金森杆实验装置上进行不同应变率下准静态和动态冲击拉伸及压缩实验。结果显示,在植物纤维中加入少量的纳米黏土颗粒和长玻璃纤维能够较大地提高复合材料的力学性能。使用扫描电子显微镜对不同应变率拉伸下的回收试件断口进行微观分析,揭示了植物纤维增强高聚物复合材料在不同应变率下的断裂特性。

     

  • 图  复合材料挤注成型试件

    Figure  1.  Extrusion molding composite specimens

    图  试件几何尺寸(单位:mm)

    Figure  2.  Dimensions of specimens (Unit: mm)

    图  SHTB实验装置示意图

    Figure  3.  Schematic diagram of SHTB experimental setup

    图  含不同填料的植物纤维增强高聚物复合材料的典型准静态实验结果

    Figure  4.  Typical quasi-static experimental results of natural fiber reinforced PP composites with different fillings

    图  不同应变率下含不同填料的植物纤维增强高聚物复合材料典型SHTB实验结果

    Figure  5.  Typical SHTB experimental results of natural fiber reinforced PP composites with different fillings at different strain rates

    图  不同应变率下含不同填料的植物纤维增强高聚物复合材料的典型SHPB实验结果

    Figure  6.  Typical SHPB experimental results of natural fiber reinforced PP composites at different strain rates

    图  不同应变率下典型拉伸实验后回收试件断裂表面的SEM图像

    Figure  7.  SEM images of fracture surface of recovered tensile specimens at different strain rates

    图  不同应变率下典型的压缩实验回收试件

    Figure  8.  Typical recovered specimens of dynamic compressive tests at different strain rates

  • [1] AL-HAIK M S, GARMESTANI H, SAVRAN A. Explicit and implicit viscoplastic models for polymeric composite [J]. International Journal of Plasticity, 2004, 20(10): 1875–1907. doi: 10.1016/j.ijplas.2003.11.017
    [2] KONTOU E, KALLIMANIS A. Thermo-visco-plastic behaviour of fibre-reinforced polymer composites [J]. Composites Science and Technology, 2006, 66(11/12): 1588–1596.
    [3] VALADEZ-GONZALEZ A, CERVANTES-UC J M, OLAYO R, et al. Chemical modification of henequen fibers with an organosilane coupling agent [J]. Composites Part B: Engineering, 1999, 30(3): 321–331. doi: 10.1016/S1359-8368(98)00055-9
    [4] RAY D, SARKAR B K, RANA A K, et al. Effect of alkali treated jute fibres on composite properties [J]. Bulletin of Materials Science, 2001, 24(2): 129–135. doi: 10.1007/BF02710089
    [5] MISHRA S, MISRA M, TRIPATHY S S, et al. Graft copolymerization of acrylonitrile on chemically modified sisal fibers [J]. Macromolecular Materials and Engineering, 2001, 286(2): 107–113. doi: 10.1002/(ISSN)1439-2054
    [6] JOSEPH K, THOMAS S, PAVITHRAN C. Effect of chemical treatment on the tensile properties of short sisal fibre-reinforced polyethylene composites [J]. Polymer, 1996, 37(23): 5139–5149. doi: 10.1016/0032-3861(96)00144-9
    [7] VAN DE WEYENBERG I, IVENS J, DE COSTER A, et al. Influence of processing and chemical treatment of flax fibres on their composites [J]. Composites Science and Technology, 2003, 63(9): 1241–1246. doi: 10.1016/S0266-3538(03)00093-9
    [8] LEE B H, KIM H J, YU W R. Fabrication of long and discontinuous natural fiber reinforced polypropylene biocomposites and their mechanical properties [J]. Fibers and Polymers, 2009, 10(1): 83–90. doi: 10.1007/s12221-009-0083-z
    [9] TUNGJITPORNKULL S, SOMBATSOMPOP N. Processing technique and fiber orientation angle affecting the mechanical properties of E-glass fiber reinforced wood/PVC composites [J]. Journal of Materials Processing Technology, 2009, 209(6): 3079–3088. doi: 10.1016/j.jmatprotec.2008.07.021
    [10] LI X, PANIGRAHI S, TABIL L G. A study on flax fiber-reinforced polyethylene biocomposites [J]. Applied Engineering in Agriculture, 2009, 25(4): 525–531. doi: 10.13031/2013.27454
    [11] SHOKRIEH M M, OMIDI M J. Tension behavior of unidirectional glass/epoxy composites under different strain rates [J]. Composite Structures, 2009, 88(4): 595–601. doi: 10.1016/j.compstruct.2008.06.012
    [12] HARGITAI H, RÁCZ I, ANANDJIWALA R D. Development of hemp fiber reinforced polypropylene composites [J]. Journal of Thermoplastic Composite Materials, 2008, 21(2): 165–174. doi: 10.1177/0892705707083949
    [13] FACCA A G, KORTSCHOT M T, YAN N. Predicting the tensile strength of natural fibre reinforced thermoplastics [J]. Composites Science and Technology, 2007, 67(11/12): 2454–2466. doi: 10.1016/j.compscitech.2006.12.018
    [14] AHMAD I, BAHARUM A, ABDULLAH I. Effect of extrusion rate and fiber loading on mechanical properties of Twaron fiber-thermoplastic natural rubber (TPNR) composites [J]. Journal of Reinforced Plastics and Composites, 2006, 25(9): 957–965. doi: 10.1177/0731684406065082
    [15] SAIN M, SUHARA P, LAW S, et al. Interface modification and mechanical properties of natural fiber-polyolefin composite products [J]. Journal of Reinforced Plastics and Composites, 2005, 24(2): 121–130. doi: 10.1177/0731684405041717
    [16] 曾广胜, 徐成, 林瑞珍, 等. 植物纤维增强聚丙烯复合材料力学性能的研究 [J]. 包装学报, 2011, 3(1): 44–47 doi: 10.3969/j.issn.1674-7100.2011.01.011

    ZENG G S, XU C, LIN R Z, et al. Exploration of mechanical performances of fiber reinforced PP composites [J]. Packaging Journal, 2011, 3(1): 44–47 doi: 10.3969/j.issn.1674-7100.2011.01.011
    [17] WANG L L. Foundation of stress wave [M]. Oxford, UK: Elsevier, 2007: 17–22.
    [18] 申海艇, 蒋招秀, 王贝壳, 等. 基于超高速相机的数字图像相关性全场应变分析在SHTB实验中的应用 [J]. 爆炸与冲击, 2017, 37(1): 15–20 doi: 10.11883/1001-1455(2017)01-0015-06

    SHEN H T, JIANG Z X, WANG B K, et al. Full field strain measurement in split Hopkinson tension bar experiments by using ultra-high-speed camera with digital image correlation [J]. Explosion and Shock Waves, 2017, 37(1): 15–20 doi: 10.11883/1001-1455(2017)01-0015-06
  • 加载中
图(8)
计量
  • 文章访问数:  7609
  • HTML全文浏览量:  4064
  • PDF下载量:  40
出版历程
  • 收稿日期:  2018-10-15
  • 修回日期:  2018-12-21

目录

    /

    返回文章
    返回