聚苯乙烯泡沫材料的动态压缩特性

雷忠琦 姚小虎 龙舒畅 常建虎 王海波

雷忠琦, 姚小虎, 龙舒畅, 常建虎, 王海波. 聚苯乙烯泡沫材料的动态压缩特性[J]. 高压物理学报, 2019, 33(2): 024202. doi: 10.11858/gywlxb.20180655
引用本文: 雷忠琦, 姚小虎, 龙舒畅, 常建虎, 王海波. 聚苯乙烯泡沫材料的动态压缩特性[J]. 高压物理学报, 2019, 33(2): 024202. doi: 10.11858/gywlxb.20180655
LEI Zhongqi, YAO Xiaohu, LONG Shuchang, CHANG Jianhu, WANG Haibo. Dynamic Compression Characteristics of Polystyrene Foam Materials[J]. Chinese Journal of High Pressure Physics, 2019, 33(2): 024202. doi: 10.11858/gywlxb.20180655
Citation: LEI Zhongqi, YAO Xiaohu, LONG Shuchang, CHANG Jianhu, WANG Haibo. Dynamic Compression Characteristics of Polystyrene Foam Materials[J]. Chinese Journal of High Pressure Physics, 2019, 33(2): 024202. doi: 10.11858/gywlxb.20180655

聚苯乙烯泡沫材料的动态压缩特性

doi: 10.11858/gywlxb.20180655
基金项目: 国家自然科学基金(11672110)
详细信息
    作者简介:

    雷忠琦(1993-),男,硕士,主要从事冲击动力学研究. E-mail: lzq000@foxmail.com

    通讯作者:

    姚小虎(1974-),男,博士,教授,博士生导师,主要从事冲击动力学及纳米力学研究. E-mail: yaoxh@scut.edu.cn

  • 中图分类号: O347.1

Dynamic Compression Characteristics of Polystyrene Foam Materials

  • 摘要: 通过万能材料试验机和落锤式冲击试验装置,对发泡聚苯乙烯泡沫材料进行准静态和动态压缩试验,探讨密度和加载速率对材料动态压缩特性的影响。基于落锤试验数据,考虑密度相关性,通过修正得到恒定应变率下材料动态本构关系的经验公式。基于LS-DYNA中的MAT57和MAT163以及ABAQUS中的Low Density Foam和Crushable Foam 4种材料模型,建立了适用于有限元仿真的发泡聚苯乙烯泡沫本构模型。通过模拟落锤冲击过程,对比试验结果发现:MAT163和Crushable Foam模型能较好地预测材料动态响应和能量吸收性能,验证了动态本构模型的可靠性,并且这两种特定的材料模型在模拟发泡聚苯乙烯泡沫冲击碰撞时具有良好的适用性。

     

  • 图  试样变形前后对比

    Figure  1.  Comparison of deformation before and after test

    图  在不同应变率准静态压缩下EPS28泡沫的应力-应变曲线

    Figure  2.  Stress-strain curve of EPS28 foam under quasi-static compression test with different strain rates

    图  不同密度EPS泡沫在准静态(0.001 s–1)压缩下的应力-应变曲线

    Figure  3.  Stress-strain curves of EPS foam with different densities under quasi-static compression test (0.001 s–1)

    图  EPS25在不同速度冲击下的应力-应变曲线

    Figure  4.  Stress-strain curve of EPS25 under different impact velocities

    图  不同密度EPS泡沫在3.960 m/s冲击下的应力-应变曲线

    Figure  5.  Stress-strain curve of EPS foam with different densities under the impact velocity of 3.960 m/s

    图  不同密度EPS的应变率与CDIF的关系

    Figure  6.  Strain rate vs. CDIF for EPS with different densities

    图  恒定应变率下EPS28的动态压缩本构曲线

    Figure  7.  Dynamic compression constitutive curve of EPS28 under constant strain rate

    图  率相关加/卸载应力-应变曲线

    Figure  8.  Rate-dependent loading/unloading stress-strain curves

    图  各项同性硬化模型的屈服面演化

    Figure  9.  Evolution of yield surface for isotropic hardened models

    图  10  率相关加载应力-应变曲线及弹性卸载行为

    Figure  10.  Rate-dependent loading stress-strain curves and elastic unloading behavior

    图  11  EPS泡沫有限元模型变形前后对比

    Figure  11.  Comparison of EPS foam FEA model before and after deformation

    图  12  H=0.2 m时EPS28仿真结果与试验结果对比

    Figure  12.  Simulated and experimental results comparison of H=0.2 m for EPS28

    图  13  H=0.5 m时EPS28仿真结果与试验结果对比

    Figure  13.  Simulated and experimental results comparison of H=0.5 m for EPS28

    图  14  H=0.8 m时EPS28仿真结果与试验结果对比

    Figure  14.  Simulated and experimental results comparison of H=0.8 m for EPS28

    表  1  EPS落锤试验工况

    Table  1.   Experimental conditions of EPS

    Size of specimen/(mm×mm×mm)Density of EPS/(kg·m–3)Mass of drop-hammer/kgDrop height/m
    100×100×2020,25,289.86480.2,0.5,0.8
    下载: 导出CSV

    表  2  EPS在20%应变处的应力与压缩动态增长因子

    Table  2.   Stress and CDIF of EPS at 20% strain

    EPS28EPS25EPS20
    Strain rate/s–1Stress/MPaCDIFStrain rate/s–1Stress/MPaCDIFStrain rate/s–1Stress/MPaCDIF
    0.0010.2121.0000.0010.1781.0000.0010.1441.000
    0.010.2441.1470.010.1971.1020.010.1591.100
    76.500.2821.32580.250.2351.31987.000.1701.180
    140.500.3141.478144.000.2511.408148.500.1821.262
    184.750.3521.657188.250.2661.492191.000.1991.379
    下载: 导出CSV

    表  3  EPS在30%应变处的应力与压缩动态增长因子

    Table  3.   Stress and CDIF of EPS at 30% strain

    EPS28EPS25EPS20
    Strain rate/s–1Stress/MPaCDIFStrain rate/s–1Stress/MPaCDIFStrain rate/s–1Stress/MPaCDIF
    0.0010.2351.000 0.0010.2011.000 0.0010.1621.000
    0.010.2691.144 0.010.2221.104 0.010.1771.095
    54.750.3051.298 63.250.2611.302 76.000.1951.201
    129.00 0.3351.427134.750.2731.358142.000.2071.280
    174.75 0.3711.580181.500.2851.422185.750.2211.362
    下载: 导出CSV

    表  4  基于Crushable Foam模型的EPS28材料参数

    Table  4.   EPS28 material parameters based on crushable foam model

    Elastic parametersPlastic parameters
    Poisson’s
    ratio
    Modulus/
    MPa
    Density/
    (kg·m–3)
    Plastic
    Poisson’s ratio
    Stress/
    MPa
    Plastic
    strain
    Yield stress
    ratio
    Strain
    rate/s–1
    06.2132800.168010.001
    0.2190.2271.2041
    0.2650.4981.27310
    0.3410.8711.343112
    0.4461.1861.514150
    0.5991.4651.685200
    下载: 导出CSV

    表  5  基于LS-DYNA MAT57模型的EPS28材料参数

    Table  5.   EPS28 material parameters based on LS-DYNA MAT57 model

    Density/
    (kg·m–3)
    Modulus/
    MPa
    Poisson’s
    ratio
    Tension cut-off
    stress/MPa
    Viscous
    coefficient
    Shape
    factor
    Hysteretic
    unloading factor
    Ed/MPaβ1
    286.213010.1100.10.36169.23
    下载: 导出CSV

    表  6  MAT163和Crushable Foam预测的吸收能量与试验结果对比

    Table  6.   MAT163 and Crushable Foam predicted results compared with the test results for absorbed energy

    H/mAbsorbed energy/JRelative error/%
    TestMAT163Crushable FoamMAT163Crushable Foam
    0.219.19217.94918.4166.484.04
    0.546.17245.08746.4792.350.66
    0.871.51471.30872.4100.291.25
    下载: 导出CSV
  • [1] OUELLET S, CRONIN D, WORSWICK M. Compressive response of polymeric foams under quasi-static, medium and high strain rate conditions [J]. Polymer Testing, 2006, 25(6): 731–743. doi: 10.1016/j.polymertesting.2006.05.005
    [2] CRONIN D S, OUELLET S. Low density polyethylene, expanded polystyrene and expanded polypropylene: strain rate and size effects on mechanical properties [J]. Polymer Testing, 2016, 53: 40–50. doi: 10.1016/j.polymertesting.2016.04.018
    [3] HORVATH J S. Expanded polystyrene (EPS) geofoam: an introduction to material behavior [J]. Geotextiles and Geomembranes, 1994, 13(4): 263–280. doi: 10.1016/0266-1144(94)90048-5
    [4] GIBSON L, ASHBY M. Cellular solids: structure and properties [M]. Cambridge: Cambridge University Press, 1997.
    [5] SAINT-MICHEL F, CHAZEAU L, CAVAILLÉ J Y, et al. Mechanical properties of high density polyurethane foams: I. effect of the density [J]. Composites Science and Technology, 2006, 66(15): 2700–2708. doi: 10.1016/j.compscitech.2006.03.009
    [6] CHEN W, HAO H, HUGHES D, et al. Static and dynamic mechanical properties of expanded polystyrene [J]. Materials & Design, 2015, 69: 170–180.
    [7] 王志亮, 诸斌. EPS泡沫冲击压缩和吸能特性试验研究 [J]. 建筑材料学报, 2013, 16(4): 630–636 doi: 10.3969/j.issn.1007-9629.2013.04.014

    WANG Z L, ZHU B. Experimental study on impact compression and energy-absorbing property of expanded polystyrene foam [J]. Journal of Building Materials, 2013, 16(4): 630–636 doi: 10.3969/j.issn.1007-9629.2013.04.014
    [8] LING C, IVENS J, CARDIFF P, et al. Deformation response of EPS foam under combined compression-shear loading. Part I: experimental design and quasi-static tests [J]. International Journal of Mechanical Sciences, 2018, 144: 480–489. doi: 10.1016/j.ijmecsci.2018.06.014
    [9] LING C, IVENS J, CARDIFF P, et al. Deformation response of EPS foam under combined compression-shear loading. Part II: high strain rate dynamic tests [J]. International Journal of Mechanical Sciences, 2018, 145: 9–23. doi: 10.1016/j.ijmecsci.2018.06.015
    [10] LING C, CARDIFF P, GILCHRIST M D. Mechanical behaviour of EPS foam under combined compression-shear loading [J]. Materials Today Communications, 2018, 16: 339–352. doi: 10.1016/j.mtcomm.2018.07.001
    [11] SHAH Q H, TOPA A. Modeling large deformation and failure of expanded polystyrene crushable foam using LS-DYNA [J]. Modelling and Simulation in Engineering, 2014: 1.
    [12] OZTURK U E, ANLAS G. Finite element analysis of expanded polystyrene foam under multiple compressive loading and unloading [J]. Materials & Design, 2011, 32(2): 773–780.
    [13] 姚小虎, 任会兰, 林荣, 等. 聚合物泡沫材料动态力学性能及其能量吸收研究 [J]. 高压物理学报, 2012, 26(5): 531–536

    YAO X H, REN H L, LIN R, et al. Study on dynamic mechanical properties and energy absorption of polymeric foams [J]. Chinese Journal of High Pressure Physics, 2012, 26(5): 531–536
    [14] 郭伟国, 李玉龙, 索涛. 应力波基础简明教程 [M]. 西安: 西北工业大学出版社, 2007: 120–154.
    [15] NAGY A, KO W L, LINDHOLM U S. Mechanical behavior of foamed materials under dynamic compression [J]. Journal of Cellular Plastics, 1974, 10(3): 127–134. doi: 10.1177/0021955X7401000306
    [16] ZHANG J, KIKUCHI N, LI V, et al. Constitutive modeling of polymeric foam material subjected to dynamic crash loading [J]. International Journal of Impact Engineering, 1998, 21(5): 369–386. doi: 10.1016/S0734-743X(97)00087-0
    [17] ABAQUS analysis user’s manual version 2017 [M]. ABAQUS Inc., 2017.
    [18] OZTURK U E. Mechanical behavior of low density polymeric foams under multiple loading and unloading [D]. Turkey: Bogazici University, 2008.
    [19] LS-DYNA theory manual version Vol. R7.1 [M]. Livermore: Livermore Software Technology, 2006.
  • 加载中
图(14) / 表(6)
计量
  • 文章访问数:  7736
  • HTML全文浏览量:  5095
  • PDF下载量:  115
出版历程
  • 收稿日期:  2018-10-15
  • 修回日期:  2018-11-12

目录

    /

    返回文章
    返回