Experimental Study of Hypervelocity Impact Characteristics for Fiber Fabric Materials
-
摘要: 与铝合金等材料相比,纤维编织材料具有质量轻、可柔性折叠等优点,可应用于柔性充气展开防护结构,进而构建多屏、大间距防护结构,提升防护效率。考虑不同性能纤维编织材料对多屏防护结构防护性能的影响,通过实验研究了不同材料制成的多屏防护结构对空间碎片的防护性能,防护屏材料包括玄武岩纤维编织材料、芳纶纤维编织材料及铝板。在超高速弹丸撞击载荷作用下,与多屏铝板防护结构相比,多屏纤维编织材料防护结构具有更高的防碎片撞击效果;对多屏纤维编织材料防护结构来说,前两屏采用玄武岩纤维编织材料,后两屏采用芳纶纤维编织材料时,防护效果更好,说明多屏防护结构的前置防护屏采用软化温度较高的无机纤维编织材料时,可能会更好地破碎弹丸,从而提高防护结构的碎片撞击防护性能。Abstract: Compared with aluminum alloy and other materials, fiber fabric materials have the advantages of light weight, flexible folding, etc. The fiber fabric material can be applied to the flexible inflatable protection structure deployment, thereby constructing a multilayer, large-spacing protection structure is necessary to improve the protection efficiency. Considering the protective performance of multilayer shields for different fiber fabric materials, the protective performance of multilayer shields with different materials on space debris impact was studied experimentally. The protective shields materials include basalt fiber fabric material, aramid fiber fabric material and aluminum plate. Compared with the multilayer aluminum plate shields, the multilayer fiber fabric material shields have higher anti-fragment impact effects under the impact of hypervelocity projectile. For the multilayer fiber fabric material shields, the protection effects is improved when the initial two shields are basalt fiber fabric material. The results show that the front parts of the multilayer shields adopting inorganic material with high softening point temperature may improve the break of projectile, thereby improve the impact protection performance for the protective structure.
-
Key words:
- fiber fabric material /
- hypervelocity impact /
- space debris /
- multilayer shields
-
表 1 玄武岩和芳纶纤维材料力学性能参数
Table 1. Material properties of basalt and aramid fibers
Material Modulus/GPa Strength/GPa Elongation rate/% Critical temperature/°C Basalt fiber 93.1–110 3.8–4.8 3.1 >1050 (Softening) Aramid fiber ≥125 4.5–5.5 2.5–3.5 >530 (Decomposition) 表 2 多屏防护结构超高速撞击实验结果对比
Table 2. Results of hypervelocity impact tests for multilayer shields
Exp. No. Structure v/(km·s–1) R/mm n Damage of the 4th shield 1 BF×3+Al×2 3.80 55 3 Crater×4 (d=0.5–1.0 mm) 2 AF×3+Al×2 3.83 50 2 No damage 3 AF×2+BF×2+Al 3.92 51 3 Crater×1 (d=1 mm), bundle fracture×2 4 BF×2+AF×2+Al 3.84 56 2 No damage 5 Al×5 3.36 47 3 Small bulge×2 -
[1] CHRISTIANSEN E L. Meteoroid/debris shielding [M]. Houston: National Aeronautics and Space Administration, 2003. [2] 郑世贵, 闫军. 空间碎片防护需求与防护材料进展 [J]. 国际太空, 2014(6): 49–53ZHENG S G, YAN J. Progress in space debris protection requirements and protective materials [J]. Space International, 2014(6): 49–53 [3] 韩增尧, 庞宝君. 空间碎片防护研究最新进展 [J]. 航天器环境工程, 2012, 29(4): 369–378HAN Z Y, PANG B J. Review of recent development of space debris protection research [J]. Spacecraft Environment Engineering, 2012, 29(4): 369–378 [4] CHRISTIANSEN E L, NAGY K, LEAR D M, et al. Space station MMOD shielding [J]. Acta Astronautica, 2009, 65(7/8): 921–929. [5] WEN X, HUANG J, LI Y, et al. Preliminary study on shielding performance of wood stuffed shield [J]. International Journal of Impact Engineering, 2016, 91: 94–101. doi: 10.1016/j.ijimpeng.2015.12.006 [6] SCHONBERG W P, WILLIAMSEN J E. Calculating hole size and crack length in multi-wall systems following an orbital debris impact [J]. International Journal of Impact Engineering, 2017, 109: 335–341. doi: 10.1016/j.ijimpeng.2017.07.015 [7] RYAN S, CHRISTIANSEN E L. Hypervelocity impact testing of advanced materials and structures for micrometeoroid and orbital debris shielding [J]. Acta Astronautica, 2013, 83: 216–231. doi: 10.1016/j.actaastro.2012.09.012 [8] VERMA P N, DHOTE K D. Characterising primary fragment in debris cloud formed by hypervelocity impact of spherical stainless steel projectile on thin steel plate [J]. International Journal of Impact Engineering, 2018, 120: 118–125. doi: 10.1016/j.ijimpeng.2018.05.003 [9] CHANGQING M, BO L. Experimental study on the behavior of a new multilayer shield against hypervelocity debris impact [J]. Polymers & Polymer Composites, 2014, 22(2): 99. [10] KE F, HUANG J, WEN X, et al. Test study on the performance of shielding configuration with stuffed layer under hypervelocity impact [J]. Acta Astronautica, 2016, 127: 553–560. doi: 10.1016/j.actaastro.2016.06.037 [11] 苗常青, 谭惠丰, 曹昱, 等. 在轨充气展开并刚化的抗空间碎片和微流星体的防护系统: CN101353087 [P]. 2009-01-28.MIAO C Q, TAN H F, CAO Y, et al. A protective system against space debris and micrometeoroids that is inflated and rigid in orbit: CN101353087 [P]. 2009-01-28. [12] 苗常青, 曹昱, 王友善, 等. 多层空腔式充气展开防护机构: CN101367440 [P]. 2009-02-18.MIAO C Q, CAO Y, WANG Y S, et al. Multi-layer cavity type inflation expansion protection structure: CN101367440 [P]. 2009-02-18. [13] 马晓青, 韩峰. 高速碰撞动力学 [M]. 北京:国防工业出版社, 1998. [14] 张庆明, 黄风雷. 超高速碰撞动力学引论 [M]. 北京: 科学出版社, 2000. [15] CHRISTIANSEN E L, KERR J H, DE LA FUENTE H M, et al. Flexible and deployable meteoroid/debris shielding for spacecraft [J]. International Journal of Impact Engineering, 1999, 23(1): 125–136. doi: 10.1016/S0734-743X(99)00068-8 [16] RUDOLPH M, SCHÄFER F, DESTEFANIS R, et al. Fragmentation of hypervelocity aluminum projectiles on fabrics [J]. Acta Astronautica, 2012, 76: 42–50. doi: 10.1016/j.actaastro.2012.02.002 [17] 管公顺, 蒲东东, 哈跃, 等. 不同环境温度下铝球弹丸高速撞击编织物防护屏试验研究 [J]. 机械工程学报, 2015, 51(3): 66–72GUAN G S, PU D D, HA Y, et al. Experimental investigation of woven bumper shield impacted by a high-velocity aluminum sphere at different ambient temperature [J]. Journal of Mechanical Engineering, 2015, 51(3): 66–72 [18] 管公顺, 李航杰, 刘家赫, 等. 非金属弹丸高速撞击编织物填充式结构的损伤 [J]. 材料研究学报, 2016, 30(5): 329–335GUAN G S, LI H J, LIU J H, et al. Investigation into damage of woven stuffed shield impacted by high-velocity nonmetallic projectile [J]. Chinese Journal of Materials Research, 2016, 30(5): 329–335 [19] 苗常青, 杜明俊, 黄磊, 等. 空间碎片柔性防护结构超高速撞击试验研究 [J]. 载人航天, 2017, 23(2): 173–176 doi: 10.3969/j.issn.1674-5825.2017.02.006MIAO C Q, DU M J, HUANG L, et al. Experimental research on hypervelocity impact characteristics of flexible anti-debris multi-shields structure [J]. Manned Spaceflight, 2017, 23(2): 173–176 doi: 10.3969/j.issn.1674-5825.2017.02.006 [20] 哈跃, 刘志勇, 管公顺, 等. 玄武岩纤维布超高速撞击损伤分析 [J]. 高压物理学报, 2012, 26(5): 557–563 doi: 10.11858/gywlxb.2012.05.012HA Y, LIU Z Y, GUAN G S, et al. Damage investigation of hypervelocity impact on woven fabric of basalt fiber [J]. Chinese Journai of High Pressure Physics, 2012, 26(5): 557–563 doi: 10.11858/gywlxb.2012.05.012 [21] 林慧国. 中外铝合金牌号对照速查手册 [M]. 北京:机械工业出版社, 2007. [22] 唐恩凌, 徐名扬, 张庆明, 等. 超高速撞击厚靶过程的能量分配研究 [J]. 固体力学学报, 2016, 37(2): 152–160TANG E L, XU M Y, ZHANG Q M, et al. Study on partitioning of energy in hypervelocity impact on thick target [J]. Chinese Journal of Solid Mechanics, 2016, 37(2): 152–160 [23] 张品亮, 龚自正, 曹燕, 等. 超高速撞击下47Zr45Ti5Al3V合金的宏观与微观响应行为 [J]. 高压物理学报, 2017, 31(3): 231–238 doi: 10.11858/gywlxb.2017.03.004ZHANG P L, GONG Z Z, CAO Y, et al. Macro- and micro-damage behaviors of 47Zr45Ti5Al3V alloy in hypervelocity impact [J]. Chinese Journal of High Pressure Physics, 2017, 31(3): 231–238 doi: 10.11858/gywlxb.2017.03.004 [24] 经福谦. 实验物态方程导引 [M]. 北京: 科学出版社, 1999.