GFRP增强圆钢管在低速冲击荷载作用下的应变率效应

武启剑 支旭东

武启剑, 支旭东. GFRP增强圆钢管在低速冲击荷载作用下的应变率效应[J]. 高压物理学报, 2019, 33(4): 044203. doi: 10.11858/gywlxb.20180653
引用本文: 武启剑, 支旭东. GFRP增强圆钢管在低速冲击荷载作用下的应变率效应[J]. 高压物理学报, 2019, 33(4): 044203. doi: 10.11858/gywlxb.20180653
WU Qijian, ZHI Xudong. Strain Rate Effect of GFRP-Reinforced Circular Steel Tube under Low-Velocity Impact[J]. Chinese Journal of High Pressure Physics, 2019, 33(4): 044203. doi: 10.11858/gywlxb.20180653
Citation: WU Qijian, ZHI Xudong. Strain Rate Effect of GFRP-Reinforced Circular Steel Tube under Low-Velocity Impact[J]. Chinese Journal of High Pressure Physics, 2019, 33(4): 044203. doi: 10.11858/gywlxb.20180653

GFRP增强圆钢管在低速冲击荷载作用下的应变率效应

doi: 10.11858/gywlxb.20180653
基金项目: 国家自然科学基金(51478144)
详细信息
    作者简介:

    武启剑(1991-),男,博士研究生,主要从事从事大跨空间结构研究. E-mail:951064631@qq.com

    通讯作者:

    支旭东(1977-),男,博士,教授,主要从事大跨空间结构研究. E-mail:zhixudong@hit.edu.cn

  • 中图分类号: O383.3; TU398.9

Strain Rate Effect of GFRP-Reinforced Circular Steel Tube under Low-Velocity Impact

  • 摘要: 讨论了玻璃纤维/环氧树脂复合材料(Glass Fiber Reinforced Plastic,GFRP)增强Q235圆钢管在低速冲击荷载作用下的应变率效应。通过轴压试验和轴向低速冲击试验获得了试件在准静态和低速冲击状态下的力学响应(轴向荷载及轴向位移),为后续仿真工作提供了依据。编写了可以考虑初始失效、损伤演化及应变率效应的GFRP材料子程序(VUMAT),并基于ABAQUS对构件的轴压及轴向冲击过程进行了仿真再现。通过仿真将不考虑应变率效应、只考虑钢管应变率效应、只考虑GFRP应变率效应、考虑钢管及GFRP应变率效应4种情况下的结果进行了对比分析。

     

  • 图  试件符号说明及实物图

    Figure  1.  Symbol description and pictures of specimen

    图  轴压试验系统

    Figure  2.  Compression test system

    图  落锤试验系统

    Figure  3.  Drop hammer test system

    图  D-58-1.5-30-3.0的重复试验结果

    Figure  4.  Repeated test results of D-58-1.5-30-3.0

    图  轴压试验及低速冲击试验结果对比

    Figure  5.  Comparison of test results between compression test and low-velocity impact test

    图  GFRP增强圆钢管有限元模型

    Figure  6.  Finite element model of GFRP reinforced circular steel tube

    图  落锤有限元模型

    Figure  7.  Finite element model of drop hammer

    图  钢管材性试验结果[2]

    Figure  8.  Material test result for steel tube[2]

    图  VUMAT子程序算法

    Figure  9.  Computational algorithm of the VUMAT subroutine

    图  10  仿真与试验试件损伤模式对比

    Figure  10.  Comparison between simulation and measured damage modes

    图  11  仿真及试验荷载-位移曲线对比

    Figure  11.  Compared load-displacement curves between simulation and low-velocity impact test

    图  12  D-58-2.0-90-4.5在不同情况下的仿真结果

    Figure  12.  Simulated results of D-58-2.0-90-4.5 with different situations

    图  14  仿真结果对比

    Figure  14.  Comparison of simulated result

    图  13  试件A-1~A-5的仿真结果

    Figure  13.  Simulated results of A-1–A-5

    表  1  试件设计尺寸

    Table  1.   Design size of tested specimens

    Specimen D×t/(mm×mm) [$\theta$/(°)]n tc/mm L/mm Type of test v/(m·s−1) Maximum strain rate/s−1
    S-58-1.5-30 58.0×1.5 [30/–30]3 2.0 100.0 Compression
    S-58-2.0-90 58.0×2.0 [90]6 2.0 100.0 Compression
    D-58-1.5-30-3.0 58.0×1.5 [30/–30]3 2.0 100.0 Impact 3.0 9.5
    D-58-1.5-30-4.5 58.0×1.5 [90]6 2.0 100.0 Impact 4.5 21.1
    D-58-2.0-90-4.5 58.0×2.0 [90]6 2.0 100.0 Impact 4.5 21.1
    下载: 导出CSV

    表  2  Johnson-Cook模型参数[2]

    Table  2.   Parameters of the Johnson-Cook model[2]

    A/MPa B/MPa n m Tm/K Tr/K
    272.28 899.7 0.94 0.1515 1795 293
    下载: 导出CSV

    表  3  Johnson-Cook断裂准则参数[2]

    Table  3.   Parameters of the Johnson-Cook fracture criterion[2]

    D1 D2 D3 D4 D5
    –43.408 44.608 0.016 0.0145 –0.046
    下载: 导出CSV

    表  4  初始失效准则及损伤演化法则[2]

    Table  4.   Initial failure criterions and damage evolution laws[2]

    Failure modes Initial failure criterions Damage evolution laws
    Fiber tensile failure $F_1^{\rm t} = {\left( {\dfrac{{\sigma {}_1}}{{{X_{\rm t}}}}} \right)^2} + {\left( {\dfrac{{\sigma {}_4}}{{{S_{12}}}}} \right)^2} + {\left( {\dfrac{{\sigma {}_6}}{{{S_{13}}}}} \right)^2} \geqslant 1{\rm{ }}$ $D_1^{\rm t} = \dfrac{{\varepsilon _1^{\rm {ft}}}}{{\varepsilon _1^{\rm {ft}} - \varepsilon _1^{\rm {it}}}}\left( {1 - \dfrac{{\varepsilon _1^{\rm {it}}}}{{{\varepsilon _1}}}} \right)$
    Fiber compression failure $F_1^{\rm c} = {\left( {\dfrac{{\sigma {}_1}}{{{X\rm_c}}}} \right)^2} \geqslant 1$ $D_1^{\rm c} = \dfrac{{\varepsilon _1^{\rm{fc}}}}{{\varepsilon _1^{\rm{fc}} - \varepsilon _1^{\rm{ic}}}}\left( {1 - \dfrac{{\varepsilon _1^{\rm{ic}}}}{{{\varepsilon _1}}}} \right)$
    Resin tensile failure $F_2^{\rm t} = {\left( {\dfrac{{\sigma {}_2}}{{{Y_{\rm t}}}}} \right)^2} + {\left( {\dfrac{{\sigma {}_4}}{{{S_{12}}}}} \right)^2} + {\left( {\dfrac{{\sigma {}_5}}{{{S_{23}}}}} \right)^2} \geqslant 1{\rm{ }}$ $D_2^{\rm t} = \dfrac{{\varepsilon _2^{\rm{ft}}}}{{\varepsilon _2^{\rm {ft}} - \varepsilon _2^{\rm{it}}}}\left({1 - \dfrac{{\varepsilon _2^{\rm{it}}}}{{{\varepsilon _2}}}} \right)$
    Resin compression failure $F_2^{\rm c} = {\left( {\dfrac{{{\tau _{nt}}\left( \theta \right)}}{{S_{23}^{\rm A} + {\mu _{nt}}{\sigma _n}\left( \theta \right)}}} \right)^2} + {\left( {\dfrac{{{\tau _{nl}}\left( \theta \right)}}{{{S_{12}} + {\mu _{nl}}{\sigma _n}\left( \theta \right)}}} \right)^2}$ $D_2^{\rm c} = \dfrac{{\gamma_{\rm r}^{\rm f}}}{{\gamma _{\rm r}^{\rm f} - \gamma _{\rm r}^{\rm i}}}\left( {1 - \dfrac{{\gamma _{\rm r}^{\rm i}}}{{{\gamma _r}}}} \right)$
    Stretch in-layer delamination $F_3^{\rm t} = {\left( {\dfrac{{{\sigma _3}}}{{{Z_{\rm t}}}}} \right)^2} + {\left( {\dfrac{{{\sigma _6}}}{{{S_{13}}}}} \right)^2} + {\left( {\dfrac{{{\sigma _5}}}{{{S_{23}}}}} \right)^2}$ $D_3^{\rm t} = \dfrac{{\varepsilon _3^{\rm ft}}}{{\varepsilon _3^{\rm ft} - \varepsilon _3^{\rm it}}}\left( {1 - \dfrac{{\varepsilon _3^{\rm it}}}{{{\varepsilon _3}}}} \right)$
    Compression in-layer delamination $F_3^{\rm c} = {\left( {\dfrac{{{\sigma _3}}}{{{Z_{\rm c}}}}} \right)^2} + {\left( {\dfrac{{{\sigma _6}}}{{{S_{13}}}}} \right)^2} + {\left( {\dfrac{{{\sigma _5}}}{{{S_{23}}}}} \right)^2}$ $D_3^{\rm c} = \dfrac{{\varepsilon _3^{\rm fc}}}{{\varepsilon _3^{\rm fc} - \varepsilon _3^{\rm ic}}}\left( {1 - \dfrac{{\varepsilon _3^{\rm ic}}}{{{\varepsilon _3}}}} \right)$
    下载: 导出CSV

    表  5  GFRP单向板材料性能[2]

    Table  5.   Material properties of GFRP unidirectional laminate[2]

    Modulus/GPa Poisson’s ratio Strength/MPa Fracture energy/(N·mm)
    E1=41.29; E2=E3=4.21; ${\nu}$12=${\nu}$13=0.31; Xt=884.5; Xc=837.17; Yt=Zt=37.38; ${\varGamma _1^{\rm t} = 28.25}$; ${\varGamma _1^{\rm c} = 80.1}$;
    G12=G13=3.16; G23=3.0 ${\nu}$23=0.42 Yc=Zc=145; S12=S13=44.765; S23=50.88 ${\varGamma _2^{\rm t} = \varGamma _3^{\rm t}= 0.36}$; ${\varGamma_2^{\rm c} = \varGamma_3^{\rm c}=7.24}$
    下载: 导出CSV

    表  6  界面性能参数[2]

    Table  6.   Parameters of cohesive behavior[2]

    Elastic properties/GPa Strength/MPa Fracture toughness/(N·mm−1) B-K parameter
    Knn=4210; Ktt=3160; Kll=3160 Tn=37.380; Tt=44.765; Tl=44.765 Gn=0.36; Gt=1.33; Gl=1.33 $\eta$=2.6
    下载: 导出CSV

    表  7  GFRP应变率效应模型所需参数

    Table  7.   Parameters for the model considering the strain rate effect of GFRP

    Parameter ${\alpha}$ ${\;\beta }$ ${\gamma}$ Parameter ${\alpha}$ ${\;\beta }$ ${\gamma}$
    E11/GPa 41.29 1.139 0.276 Xt/MPa 837.17 7.721 0.886
    E22/GPa 4.21 0.437 0.262 Yt/MPa 37.38 13.088 0.131
    G12/GPa 3.16 –0.941 0.054 Yc/MPa 145 0.11 1.278
    Xt/MPa 881.5 7.721 0.886 S/MPa 44.756 15.656 0.086
    下载: 导出CSV

    表  8  仿真试件设计

    Table  8.   Design of simulated specimens

    Specimen D/mm t/mm [$\theta$/(°)]n tc/mm L/mm Displacement/mm Loading speed/(m·s−1)
    A-1 58.0 2.0 [90]6 2.0 100 20.0 Quasi-static
    A-2 58.0 2.0 [90]6 2.0 100 20.0 2.0
    A-3 58.0 2.0 [90]6 2.0 100 20.0 4.0
    A-4 58.0 2.0 [90]6 2.0 100 20.0 6.0
    A-5 58.0 2.0 [90]6 2.0 100 20.0 8.0
    B-1 58.0 2.0 [90]6 3.0 100 20.0 Quasi-static
    B-2 58.0 2.0 [90]6 3.0 100 20.0 2.0
    B-3 58.0 2.0 [90]6 3.0 100 20.0 4.0
    B-4 58.0 2.0 [90]6 3.0 100 20.0 6.0
    B-5 58.0 2.0 [90]6 3.0 100 20.0 8.0
    C-1 58.0 3.0 [90]6 2.0 100 20.0 Quasi-static
    C-2 58.0 3.0 [90]6 2.0 100 20.0 2.0
    C-3 58.0 3.0 [90]6 2.0 100 20.0 4.0
    C-4 58.0 3.0 [90]6 2.0 100 20.0 6.0
    C-5 58.0 3.0 [90]6 2.0 100 20.0 8.0
    下载: 导出CSV
  • [1] 岳清瑞, 杨勇新. 纤维增强复合材料加固结构耐久性研究综述 [J]. 建筑结构学报, 2009, 30(6): 8–15.

    YUE Q R, YANG Y X. Introduction to durability of concrete strengthened with fiber reinforced polymers [J]. Journal of Building Structures, 2009, 30(6): 8–15.
    [2] ZHI X D, WU Q J, WANG C. Experimental and numerical study of GFRP-reinforced steel tube under axial impact loads [J]. International Journal of Impact Engineering, 2018, 122: 23–37. doi: 10.1016/j.ijimpeng.2018.07.018
    [3] BATUWITAGE C, FAWZIA S, THAMBIRATNAM D, et al. Impact behaviour of carbon fibre reinforced polymer (CFRP) strengthened square hollow steel tubes: a numerical simulation [J]. Thin-Walled Structures, 2018, 131: 245–257. doi: 10.1016/j.tws.2018.06.033
    [4] ALAM M I, FAWZIA S. Numerical studies on CFRP strengthened steel columns under transverse impact [J]. Composite Structures, 2015, 120: 428–441. doi: 10.1016/j.compstruct.2014.10.022
    [5] 李洋, 王俊, 刘伟庆. 纤维复合材料-钢组合柱侧向冲击试验和有限元仿真分析 [J]. 钢结构, 2017, 32(2): 21–26.

    LI Y, WANG J, LIU W Q. Experimental study and FE simulation of the anti-impact performance of GFRP-steel column subjected to transverse impact [J]. Steel Construction, 2017, 32(2): 21–26.
    [6] KADHIM M M A, WU Z J, LEE S C. Loading rate effects on CFRP strengthened steel square hollow sections under lateral impact [J]. Engineering Structures, 2018, 171: 874–882. doi: 10.1016/j.engstruct.2018.04.066
    [7] KADHIM M M A, WU Z J, LEE S C. Experimental study of CFRP strengthened steel columns subject to lateral impact loads [J]. Composite Structures, 2018, 185: 94–104. doi: 10.1016/j.compstruct.2017.10.089
    [8] JOHNSON G R, COOK W H. A constitutive model and data for metals subjected to large Strains, high strain rates and high temperatures [C]//Proceedings of the Seventh International Symposium on Ballistics. The Hague, Netherlands, 1983: 1–7.
    [9] ZERILLI F J, ARMSTRONG R W. Dislocation-mechanics-based constitutive relations for material dynamics calculations [J]. Journal of Applied Physics, 1987, 61(5): 1816–1825. doi: 10.1063/1.338024
    [10] LIN L, FAN F, ZHI X D. Dynamic constitutive relation and fracture model of Q235A steel [J]. Applied Mechanics and Materials, 2013, 274: 463–466. doi: 10.4028/www.scientific.net/AMM.274
    [11] ZHANG D N, SHANGGUAN Q Q, XIE C J, et al. A modified Johnson-Cook model of dynamic tensile behaviors for 7075-T6 aluminum alloy [J]. Journal of Alloys and Compounds, 2015, 619: 186–194. doi: 10.1016/j.jallcom.2014.09.002
    [12] TAN J Q, ZHAN M, LIU S, et al. A modified Johnson-Cook model for tensile flow behaviors of 7050-T7451 aluminum alloy at high strain rates [J]. Materials Science and Engineering:A, 2015, 631: 214–219. doi: 10.1016/j.msea.2015.02.010
    [13] HASHIN Z. Failure criterion for unidirectional fiber composite [J]. Journal of Applied Mechanics, 1980, 47: 329–334. doi: 10.1115/1.3153664
    [14] PUCK A, SCHURMANN H. Failure analysis of FRP laminates by means of physically based phenomenological models [J]. Composites Science and Technology, 2001, 62: 1633–1662.
    [15] SINGH H, NAMALA K K, MAHAJAN P. A damage evolution study of E-glass/epoxy composite under low velocity impact [J]. Composites Part B: Engineering, 2015, 76: 235–248. doi: 10.1016/j.compositesb.2015.02.016
    [16] LIAO B B, LIU P F. Finite element analysis of dynamic progressive failure of plastic composite laminates under low velocity impact [J]. Composite Structures, 2017, 159: 567–578. doi: 10.1016/j.compstruct.2016.09.099
    [17] Dassault Systèmes Simulia Corp. ABAQUS 6.11 user’s manual [Z]. Providence, RI: Dassault Systèmes Simulia Corp, 2011.
    [18] SHOKRIEH M M, KARAMNEJAD A. Investigation of strain rate effects on the dynamic response of a glass/epoxy composite plate under blast loading by using the finite difference method [J]. Mechanics of Composite Materials, 2014, 50(3): 295–310. doi: 10.1007/s11029-014-9415-1
  • 加载中
图(14) / 表(8)
计量
  • 文章访问数:  7116
  • HTML全文浏览量:  2808
  • PDF下载量:  30
出版历程
  • 收稿日期:  2018-10-16
  • 修回日期:  2018-11-06

目录

    /

    返回文章
    返回