A Modified Aquarium Test Using a Continuous Pressure-Conducted Velocity Probe for Measurement of Detonation Pressure
-
摘要: 为了使爆压测定方法更加方便并且更适合于野外大药量的测量,利用自行研制的压导式连续电阻丝探针,设计了一种改进水箱法,可在单次试验中连续记录炸药爆轰波和水中冲击波波阵面的运动轨迹。同时,为了进一步简化实验装置和操作过程,设计了基于连续压导探针的简化水箱法。利用以上两种实验装置,对不同组分的ANFO炸药进行爆压测量,获得了爆轰波-冲击波波阵面时程曲线。通过对爆轰波段数据拟合,得到了各待测炸药的爆速;利用贴近炸药区域介质中的冲击波数据,拟合得到初始冲击波速度,再结合水和有机玻璃的冲击Hugoniot曲线以及阻抗匹配原理,求解得到各待测炸药的CJ压力和绝热指数。实验结果表明,基于连续压导探针的改进水箱法可准确快捷地测量炸药的爆速、爆压等参数,可作为炸药性能测试技术的重要补充。Abstract: In order to measure the detonation pressure of large mass explosive more convenient in the field work, a modified aquarium test has been designed by using a self-developed continuous pressure-conducted velocity probe (CPVP). The method can continuously record the trajectories of detonation and shock wave fronts in a single test. In addition, a simplified aquarium test method based on the novel velocity probe was designed to further simplify the experimental setup and operation process. By using the two type of devices, detonation pressure measurements for the different ammonium-nitrate/fuel-oil (ANFO) ratio explosives were performed and the time history curves of detonation-shock wave fronts were measured. The detonation velocity of each shot was then obtained by fitting the detonation wave data, and the initial shock velocity was determined based on the shock wave data of the medium adjacent to the explosive. Based on the shock Hugoniot curves of water and Plexiglas, we calculated the CJ pressures and adiabatic exponents of each test based on impedance matching principle. The experimental results show that the CPVP-based aquarium test can measure the detonation velocity and detonation pressure accurately and efficiently. The CPVP-based aquarium test method will be a significant supplement technique for explosive performance estimation.
-
表 1 不同试验装置测得的炸药爆压
Table 1. Measuring results of detonation pressure by different methods
Test method Shot No. Inert material Explosive component Density/(g·cm–3) Detonation velocity/(km·s–1) Detonation pressure/GPa γ Fig. 2(a) DP-1 Water ANFO 0.860 3.7187 3.600 2.304 Fig. 2(b) DP-2 Water ANFO 0.860 3.6482 3.535 2.238 DP-3 PMMA ANFO 0.860 3.6540 3.524 2.258 DP-4 PMMA ANFO 0.865 3.6336 3.539 2.227 DP-5 PMMA 100%ANFO+0%RDX 0.880 2.8978 2.394 2.086 DP-6 PMMA 85%ANFO+15%RDX 0.832 4.2209 4.469 2.317 DP-7 PMMA 50%ANFO+50%RDX 0.875 4.9798 6.446 2.366 Note: The ANFO of DP-1–DP-5 are powdery while those of DP-6 and DP-7 are granular. -
[1] SONG S Y, LEE J W. A detonation pressure measurement system employing high resistance manganin foil gauge [C]// Proceedings of the 9th Symposium (International) on Detonation. Portland, OR, 1989: 471–477. [2] PHILIPPART D. The study of booster materials with electromagnetic particle velocity gauges [C]//Proceedings of 8th Symposium (International) on Detonation, NSWC MP, 1985: 86–194. [3] DOROKHIN V V, ZUBAREVYU V N, OREKIN K, et al. Continuous radiographic recording for explosion products behind a detonation front [J]. Combustion, Explosion and Shock Waves, 1988, 24(1): 109–112. doi: 10.1007/BF00749084 [4] MADER C L, CRANE S L, JOHNSON J N. Los Alamos explosives performance data [M]. Los Angeles: University of California Press, 1983. [5] COOK M A, KEYES R T, URSENBACH W O. Measurements of detonation pressure [J]. Journal of Applied Physics, 1962, 33(12): 3413–3421. doi: 10.1063/1.1702422 [6] RIGDON J K, AKST I B. An analysis of the " Aquarium technique” as a precision detonation pressure measurement gage [C]// Proceedings of the Fifth Symposium (International) on Detonation, 1970. [7] 徐康, 于德洋, 许云祥, 等. 水箱法——一种可用于小药量测定炸药爆轰压力的方法 [J]. 爆炸与冲击, 1981, 1(2): 89–95XU K, YU D Y, XU Y X, et al. Aquarium test–a method for determination of the detonation pressure with small quantity of explosive [J]. Explosion and Shock waves, 1981, 1(2): 89–95 [8] 薛彭寿, 王淑萍. 大药量水箱法测定炸药爆轰压力的研究 [J]. 火炸药, 1992(2): 10–19XUE P S, WANG S P. Study on detonation pressure measurement for large charge with aquarium test [J]. Chinese Journal of Explosives & Propellants, 1992(2): 10–19 [9] ASHAEV V K, DORONIN G S, LEVIN A D. Detonation front structure in condensed high explosives [J]. Combustion, Explosion and Shock Waves, 1988, 24(1): 88–92. doi: 10.1007/BF00749080 [10] 于德洋, 曾雄飞, 徐康. 阻抗匹配法测爆压的研究 [J]. 爆炸与冲击, 1983, 3(3): 67–74YU D Y, ZENG X F, XU K. Impedance matching method for detonation pressure measurements [J]. Explosion and Shock Waves, 1983, 3(3): 67–74 [11] 于德洋, 曾雄飞, 徐康. 对一种新的爆压测试方法—二碘甲烷法—的研究 [J]. 爆炸与冲击, 1985, 5(2): 69–73YU D Y, ZENG X F, XU K. Investigations of a new detonation pressure measuring method-diiodomethane method [J]. Explosion and Shock Waves, 1985, 5(2): 69–73 [12] 李晓杰, 王小红, 闫鸿浩, 等. 一种连续电阻丝探针及其制造方法: CN 103630704A [P]. 2014-03-12. [13] 李科斌, 李晓杰, 闫鸿浩, 等. 炸药爆速连续测量的杂波分析及新型探针的研制 [J]. 工程爆破, 2017, 23(5): 85–90 doi: 10.3969/j.issn.1006-7051.2017.05.017LI K B, LI X J, YAN H H, et al. The mechanism analysis of noise wave in detonation velocity continuous measurement [J]. Engineering Blasting, 2017, 23(5): 85–90 doi: 10.3969/j.issn.1006-7051.2017.05.017 [14] 王宇新, 李晓杰, 闫鸿浩, 等. 炸药爆速的连续测量技术研究 [J]. 爆破器材, 2017, 46(6): 59–64 doi: 10.3969/j.issn.1001-8352.2017.06.012WANG Y X, LI X J, YAN H H, et al. Study on continuous testing technology of detonation velocity of explosives [J]. Explosive Materials, 2017, 46(6): 59–64 doi: 10.3969/j.issn.1001-8352.2017.06.012 [15] 李科斌, 李晓杰, 闫鸿浩, 等. 一种测量工业炸药临界直径和临界厚度的连续电阻丝探针法 [J]. 含能材料, 2018, 26(7): 620–625LI K B, LI X J, YAN H H, et al. A continuous resistance wire probe method for determining the critical diameter and thickness of commercial explosives [J]. Chinese Journal of Energetic Materials, 2018, 26(7): 620–625 [16] 李科斌, 李晓杰, 闫鸿浩, 等. 一种可实现水下爆炸参数连续测量的新型电测方法 [J]. 兵工学报, 2017(Suppl 1): 108–112LI K B, LI X J, YAN H H, et al. New electrometric method for the continuous measurement of underwater explosion parameters [J]. Acta Armamentarii, 2017(Suppl 1): 108–112 [17] RICE M H, WALSH J M. Equation of state of water to 250 kilobars [J]. The Journal of Chemical Physics, 1957, 26(4): 824–830. doi: 10.1063/1.1743415 [18] MARSH S P. LASL shock Hugoniot data [M]. Berkeley: University of California Press, 1980.