聚脲涂覆钢板在爆炸载荷作用下的动态响应

王殿玺 郭香华 张庆明

王殿玺, 郭香华, 张庆明. 聚脲涂覆钢板在爆炸载荷作用下的动态响应[J]. 高压物理学报, 2019, 33(2): 024103. doi: 10.11858/gywlxb.20180650
引用本文: 王殿玺, 郭香华, 张庆明. 聚脲涂覆钢板在爆炸载荷作用下的动态响应[J]. 高压物理学报, 2019, 33(2): 024103. doi: 10.11858/gywlxb.20180650
WANG Dianxi, GUO Xianghua, ZHANG Qingming. Dynamic Response of Polyurea Coated Steel Plate under Blast Loading[J]. Chinese Journal of High Pressure Physics, 2019, 33(2): 024103. doi: 10.11858/gywlxb.20180650
Citation: WANG Dianxi, GUO Xianghua, ZHANG Qingming. Dynamic Response of Polyurea Coated Steel Plate under Blast Loading[J]. Chinese Journal of High Pressure Physics, 2019, 33(2): 024103. doi: 10.11858/gywlxb.20180650

聚脲涂覆钢板在爆炸载荷作用下的动态响应

doi: 10.11858/gywlxb.20180650
详细信息
    作者简介:

    王殿玺(1993-),男,硕士研究生,主要从事多层结构防爆、抗侵彻研究. E-mail: 17801118808@163.com

    通讯作者:

    郭香华(1974-),男,博士,副教授,主要从事相场方法、装甲车防护研究. E-mail: guoxh@bit.edu.cn

  • 中图分类号: O383.3

Dynamic Response of Polyurea Coated Steel Plate under Blast Loading

  • 摘要: 在验证了所用方法有效性的基础上,采用有限元软件LS-DYNA数值模拟了等面密度聚脲涂覆钢板结构及单一钢板在空爆下的动态响应,分析了聚脲涂覆位置对其抗爆性的影响;在此基础上,通过量纲分析的方法讨论了爆心距、炸药质量、涂覆聚脲厚度对钢板变形的影响规律。结果表明,聚脲涂覆在钢板上的位置影响其抗爆性能。其他变量一定的情况下,钢板中心最大位移随爆心距的增加近似呈指数递减趋势;改变炸药质量时,钢板中心最大位移随炸药质量的增加近似呈线性递增趋势;改变涂覆聚脲厚度时,钢板中心最大位移随涂层厚度的增加近似呈线性递减趋势。

     

  • 图  球形TNT与聚脲涂覆钢板

    Figure  1.  Schematic of spherical TNT and polyurea coated steel plate

    图  聚脲涂覆钢板结构与炸药模型

    Figure  2.  Schematic of polyurea-coated structure and explosive

    图  试验中聚脲涂覆钢板的变形[6]

    Figure  3.  Deformation of polyurea coated steel plate in test[6]

    图  数值模拟中聚脲涂覆钢板的变形

    Figure  4.  Deformation of polyurea coated steel plate in simulation

    图  不同工况中钢板的位移云图

    Figure  5.  Displacement cloud chart of steel plate in different working conditions

    图  钢板最大变形处的位移时程曲线

    Figure  6.  Displacement-time curves at maximum deflections of steel plates

    图  钢板最大变形处的塑性应变时程曲线

    Figure  7.  Plastic strain-time curves at maximum deflections of steel plates

    图  爆心距对聚脲涂覆钢板最大位移的影响

    Figure  8.  Relationship between the detonation distance and the maximum displacement of polyurea coated steel plate

    图  炸药质量对聚脲涂覆钢板最大位移的影响

    Figure  9.  Relationship between the mass of explosive and the maximum displacement of polyurea coated steel plate

    图  10  聚脲层厚度对聚脲涂覆钢板最大位移的影响

    Figure  10.  Relationship between the thickness of polyurea layer and the maximum displacement of polyurea coated steel plate

    表  1  聚脲弹性体材料参数[6]

    Table  1.   Parameters of polyurea elastomer material[6]

    Density/(kg·m–3)Tensile strength/MPaElongation at break/%Tear strength/(kN·m–1)Shore hardness (HA)
    1020244008585–95
    下载: 导出CSV

    表  2  结构设计方案

    Table  2.   Structural design schemes

    Condition
    number
    Structural
    diagram
    Steel plate
    thickness/mm
    Polyurea
    thickness/mm
    TNT
    dose/kg
    Detonation
    distance/mm
    A1
    Contrast condition
    301200
    A2
    Single steel plate
    3.5201200
    A3
    Front coating
    341200
    A4
    Back coating
    341200
    A5
    Double sided coating
    32+21200
     Note: Q235A steel plate; Polyurea.
    下载: 导出CSV

    表  3  Q235A钢材料参数[12]

    Table  3.   Parameters of Q235A steel material[12]

    Density/(kg·m–3)Young’s modulus/GPaPoisson’s ratioσY/MPaTangent modulus/GPaC/s–1P
    78502100.324021055
    下载: 导出CSV
  • [1] MATHEWS W. Services test spray-on vehicle armor [N]. Army Times, 2004–05–03.
    [2] 宋彬, 黄正祥, 翟文, 等. 聚脲弹性体夹芯防爆罐抗爆性能研究 [J]. 振动与冲击, 2016(7): 138–144

    SONG B, HUANG Z X, ZHAI W, et al. Anti-detonation properties of explosion-proof pots made of sandwich structures with polyurea elastomer [J]. Journal of Vibration and Shock, 2016(7): 138–144
    [3] 甘云丹, 宋力, 杨黎明. 弹性体涂覆钢板抗冲击性能的数值模拟 [J]. 兵工学报, 2016(S2): 15–18

    GAN Y D, SONG L, YANG L M. Numerical simulation for anti-blast performances of steel plate coated with elastomer [J]. Acta Armamentarii, 2016(S2): 15–18
    [4] BAHEI-EI-DIN Y A, DVORAK G J, FREDRICKSEN O J. A blast-tolerant sandwich plate design with a polyurea interlayer [J]. International Journal of Solids and Structures, 2006, 43(25/26): 7644–7658. doi: 10.1016/j.ijsolstr.2006.03.021
    [5] AMINI M R, SIMON J, NEMAT-NASSER S. Numerical modeling of effect of polyurea on response of steel plates to impulsive loads in direct pressure-pulse experiments [J]. Mechanics of Materials, 2010, 42(6): 628–639. doi: 10.1016/j.mechmat.2009.09.008
    [6] 赵鹏铎, 张鹏, 张磊, 等. 聚脲涂覆钢板结构抗爆性能试验研究 [J]. 北京理工大学学报, 2018, 38(2): 118–123

    ZHAO P D, ZHANG P, ZHANG L, et al. Experimental investigation on the performance of polyurea-coated structure under blast loads [J]. Transactions of Beijing Institute of Technology, 2018, 38(2): 118–123
    [7] TEKALUR S A, SHUKLA A, SHIVAKUMAR K. Blast resistance of polyurea based layered composite materials [J]. Composite Structures, 2008, 84(3): 271–281. doi: 10.1016/j.compstruct.2007.08.008
    [8] LEBLANC J, SHUKLA A. Response of polyurea-coated flat composite plates to underwater explosive loading [J]. Journal of Composite Materials, 2015, 49(8): 965–980. doi: 10.1177/0021998314528263
    [9] ACKLAND K, ANDERSON C, NGO T D. Deformation of polyurea-coated steel plates under localised blast loading [J]. International Journal of Impact Engineering, 2013, 51: 13–22. doi: 10.1016/j.ijimpeng.2012.08.005
    [10] XUE L, MOCK W, BELYTSCHKO T. Penetration of DH-36 steel plates with and without polyurea coating [J]. Mechanics of Materials, 2010, 42(11): 981–1003. doi: 10.1016/j.mechmat.2010.08.004
    [11] HALLQUIST J O. LS-DYNA keyword user’s manual [M]. Livermore Software Technology Corporation, 2007.
    [12] LIU X R, TIAN X G, LU T J, et al. Blast resistance of sandwich-walled hollow cylinders with graded metallic foam cores [J]. Composite Structures, 2012, 94(8): 2485–2493. doi: 10.1016/j.compstruct.2012.02.029
  • 加载中
图(10) / 表(3)
计量
  • 文章访问数:  10170
  • HTML全文浏览量:  4628
  • PDF下载量:  53
出版历程
  • 收稿日期:  2018-10-15
  • 修回日期:  2018-12-02

目录

    /

    返回文章
    返回