爆炸冲击波在仿桥梁结构内传播的数值模拟

孟祥瑞 栗建桥 宁建国 许香照

孟祥瑞, 栗建桥, 宁建国, 许香照. 爆炸冲击波在仿桥梁结构内传播的数值模拟[J]. 高压物理学报, 2019, 33(4): 042301. doi: 10.11858/gywlxb.20180649
引用本文: 孟祥瑞, 栗建桥, 宁建国, 许香照. 爆炸冲击波在仿桥梁结构内传播的数值模拟[J]. 高压物理学报, 2019, 33(4): 042301. doi: 10.11858/gywlxb.20180649
MENG Xiangrui, LI Jianqiao, NING Jianguo, XU Xiangzhao. Numerical Simulation of Explosive Shock Wave Propagation in Imitation Bridge Structure[J]. Chinese Journal of High Pressure Physics, 2019, 33(4): 042301. doi: 10.11858/gywlxb.20180649
Citation: MENG Xiangrui, LI Jianqiao, NING Jianguo, XU Xiangzhao. Numerical Simulation of Explosive Shock Wave Propagation in Imitation Bridge Structure[J]. Chinese Journal of High Pressure Physics, 2019, 33(4): 042301. doi: 10.11858/gywlxb.20180649

爆炸冲击波在仿桥梁结构内传播的数值模拟

doi: 10.11858/gywlxb.20180649
基金项目: 国家自然科学基金(11532012,11802026);中国博士后科学基金(2018M641209)
详细信息
    作者简介:

    孟祥瑞(1994-),男,硕士研究生,主要从事结构爆炸冲击数值计算研究. E-mail: woo888888@163.com

    通讯作者:

    许香照(1989-),男,博士,主要从事计算爆炸力学研究. E-mail: xuxiangxuxiangz@bit.edu.cn

  • 中图分类号: O383.2; O389

Numerical Simulation of Explosive Shock Wave Propagation in Imitation Bridge Structure

  • 摘要: 桥梁作为交通枢纽中的重要关卡,受到强冲击载荷作用后的毁伤效果一直是国内外关注的热点问题。炸药爆炸是对其进行毁伤的最为有效的手段之一,研究爆炸冲击波在桥梁结构中的传播规律对桥梁结构抗爆设计和爆炸事故救援具有至关重要的作用。为此,搭建了桥梁的局部结构并进行爆炸毁伤实验,为数值模拟研究提供数据参考。采用自主开发的三维爆炸与冲击问题仿真软件EXPLOSION-3D对仿桥梁结构的爆炸冲击波传播问题进行了数值模拟研究。将数值模拟结果与实验结果进行对比,验证了数值算法的有效性;进一步通过对比不同位置处的压力时程曲线来分析爆炸冲击波在仿桥梁结构中的传播规律,并分析了炸药在不同位置处爆炸和不同当量炸药爆炸对桥梁结构毁伤的影响规律。基于数值仿真结果,得到了给定工况下炸药对仿桥梁结构内的人体和车辆的毁伤程度。最后,通过对比分析不同工况的数值模拟结果,从仿真的角度给出了安全预防建议。

     

  • 图  PMMIC-3D的程序流程图

    Figure  1.  Program flow of PMMIC-3D

    图  桥梁设计图

    Figure  2.  The design of bridge

    图  现场搭建图

    Figure  3.  Actual construction of bridge

    图  爆炸后模型受损情况

    Figure  4.  Damage of model after explosion

    图  桥梁三维模型图

    Figure  5.  3D model of bridge

    图  前处理网格效果图

    Figure  6.  Grid meshing

    图  不同时刻爆炸冲击波传播图像

    Figure  7.  Explosion shock wave propagation images at different time

    图  实验结果与仿真结果对比

    Figure  8.  Comparision diagram of experimental and simulation results

    图  起爆点与关键点位置图

    Figure  9.  Explosive position and critical points

    图  10  部分关键点的压力时程曲线

    Figure  10.  Pressure-time curves at some reference positions

    图  11  关键点峰值压力

    Figure  11.  Peak pressure at different points

    图  12  不同炸高的炸药位置

    Figure  12.  Explosive position with different height

    图  13  不同水平位置的炸药

    Figure  13.  Explosion positions

    图  14  不同炸高情况下关键点的峰值压力

    Figure  14.  Peak pressure at different points with different heights

    图  15  不同水平位置炸药情况下的峰值压力

    Figure  15.  Peak pressure at different points with different horizontal positions

    图  16  关键点在不同当量炸药情况下的峰值压力

    Figure  16.  Peak pressure at different positions with different explosive mass

    图  17  桥体为金属介质时部分三维仿真结果

    Figure  17.  Some 3D simulation results of steel structure

    图  18  破坏效果对比

    Figure  18.  Comparison of damage effects

    图  19  桥体为不同介质时关键点处的峰值压力

    Figure  19.  Peak pressure at different positions with different structural medium

    表  1  桥梁事故部分事件

    Table  1.   Some accidents of bridge

    DateAccident
    2004–06–10Collapse accident of TianZhuangTai bridge in Panjin, Liaoning
    2004–06–14Collapse accident of bridge in Longgang, Shenzhen
    2006–08–02Collapse accident of XiongYue bridge, Yingkou, Liaoning
    2006–03–11“3.11” collapse of bridge in Yangzhou, Jiangsu
    2006–11–26316 national highway Lengshui bridge
    2007–04–29Collapse accident of California expressway to Oakland
    2007–06–15Collapse accident of Jiujiang bridge, Guangdong
    2009–07–15Collapse accident of Tianjin Tanggu ramp bridge
    2010–12–03Collapse accident of Jiaxu river crossing bridge in Haining, Zhejiang
    2013–02–01Collapse accident of Yichang bridge in Henan
    2014–08–30Fujian Shaowu bridge accident
    2015–04–02Jinbao high–speed rail collapses under construction of viaduct
    2015–06–19Collapse accident of Guangdong Jiangxi expressway ramp bridge
    下载: 导出CSV

    表  2  B炸药性能参数

    Table  2.   Performance parameters of Explosive B

    Density/(g·cm−3)CJ pressure/GPaCJ detonation velocity/(m·s−1)Specific energy/(kJ·g−1)
    1.6715.081009.5
    下载: 导出CSV

    表  3  45钢的材料参数

    Table  3.   Material parameters of 45 steel

    $\rho $/(g·cm−3)E/GPa${c_0}$${\gamma _0}$$a$${s_1}$${s_2}$${s_3}$
    7.8520646002.00.431.330.00.0
    下载: 导出CSV
  • [1] 张钱城, 郝方楠, 李裕春. 爆炸冲击载荷作用下车辆和人员的损伤与防护 [J]. 力学与实践, 2014, 36(5): 527–539.

    ZHANG Q C, HAO F N, LI Y C. Reserch progress in the injury and protection to vehicle and passengers under explosive shock loading [J]. Mechanics in Engineering, 2014, 36(5): 527–539.
    [2] GANNON J C. Design of bridges for security against terrorist attacks [D]. Austin, TX: The University of Texas at Austin, 2004: 10–125.
    [3] JONES N, BREBBIA C A. Structures under shock and impact VIII [M]. Southampton, UK: WIT Press, 2004: 53–62.
    [4] WINGET D G, MARCHAND K A, WILLIAMSON E B. Analysis and design of critical bridges subjected to blast loads [J]. Journal of Structural Engineering, 2005, 131(8): 1243–1255. doi: 10.1061/(ASCE)0733-9445(2005)131:8(1243)
    [5] WILLIAMSON E B, WINGET D G. Risk management and design of critical bridges for terrorist attacks [J]. Journal of Bridge Engineering, 2005, 10(1): 96–106. doi: 10.1061/(ASCE)1084-0702(2005)10:1(96)
    [6] IBRAHIM A, SALIM H. Numeical prediction of the dynamic response of prestressed concrete box girder bridges under blast loads [C]//11th International LS-DYNA Users Conference, 2006: 13–15.
    [7] 魏雪英, 白国良. 爆炸载荷下钢筋混凝土柱的动力响应及破坏形态分析 [J]. 解放军理工大学学报(自然科学版), 2007, 8(5): 525–529.

    WEI X Y, BAI G L. Dynamic response and failure modes of RC column under blast load [J]. Journal of PLA University of Science and Technology (Natural Science Edition), 2007, 8(5): 525–529.
    [8] SYNGELLAKIS S. Design against blast [M]. Southampton, UK: WIT Press, 2012: 143–151.
    [9] SON J, LEE H J. Performance of cable-stayed bridge pylons subjected to blast loading [J]. Engineering Structures, 2011, 18(33): 1133–1148.
    [10] NING J G, MA T B, FEI G L. Multi-material Eulerian method and parallel computation for 3D explosion and impact problems [J]. International Journal of Computational Methods, 2014, 11(5): 1350079. doi: 10.1142/S0219876213500795
    [11] NING J G, MA T B, LIN G H. A grid generator for 3-D explosion simulations using the staircase boundary approach in Cartesian coordinates based on STL models [J]. Advances in Engineering Software, 2014, 67(1): 148–155.
    [12] FEI G L, MA T B. Large-scale high performance computation on 3D explosion and shock problems [J]. Applied Mathematics and Mechanics (English Edition), 2011, 32(3): 375–382. doi: 10.1007/s10483-011-1422-7
    [13] FEI G L, MA T B, NING J G. Parallel computing of the multi-material eulerian numerical method and hydrocode [J]. International Journal of Nonlinear Sciences & Numerical Simulation, 2010, 11(Suppl): 189–193.
    [14] FEI G L, MA T B, NING J G. Study on the numerical simulation of explosion and impact processes using PC cluster system [J]. Advanced Materials Research, 2012, 433/440: 2892–2898. doi: 10.4028/www.scientific.net/AMR.433-440
    [15] JOHNSON W E, ANDERSON C E. History and application of hydrocodes in hypervelocity impact [J]. International Journal Impact Engineering, 1987, 5(1): 423–439.
    [16] ANDERSON C E. An overview of the theory of hydrocodes [J]. International Journal Impact Engineering, 1987, 5(1): 33–59.
    [17] BENSEN D J. A multi-material Eulerian formulation for the efficient solution of impact and penetration problems [J]. Computational Mechanics, 1994, 15(6): 558–571.
  • 加载中
图(19) / 表(3)
计量
  • 文章访问数:  5630
  • HTML全文浏览量:  2520
  • PDF下载量:  43
出版历程
  • 收稿日期:  2018-10-15
  • 修回日期:  2019-01-06
  • 刊出日期:  2019-08-25

目录

    /

    返回文章
    返回