Experimental Study on the Effects of Ambient Temperature on Explosion Characteristics of Multiphase Mixtures
-
摘要: 为了研究环境温度对以铝粉、乙醚、硝基甲烷为原料的气液固多相混合物爆炸特性的影响,利用20 L球型爆炸罐,在不同环境温度(20~50 ℃)下,实验研究了温度变化对混合物的爆炸超压、最大爆炸压力上升速率和爆炸下限的影响。结果表明:实验工况下,乙醚的爆炸特性参数随温度升高而降低;铝粉的爆炸特性参数受温度影响较小;气液固多相混合物的爆炸压力随温度升高略微下降,最大爆炸压力上升速率先升后降,存在一个最佳浓度配比使爆炸威力最佳;气液固多相混合物的爆炸下限随温度升高而下降,在绝大部分易挥发物质汽化后,混合物下限趋于稳定。Abstract: In order to explore the influence of ambient temperature on the explosion properties of aluminium/ether/nitromethane gas-fluid-solid multiphase mixtures, we use a 20 L spherical explosion tank to experimentally obtain the effect of temperature on the mixture explosion over pressure, the maximum explosion pressure rise rate and the lower explosive limit. The results show that: under the experimental condition, the explosive characteristic parameters of ether decrease with the increase of temperature. The explosion characteristic parameters of aluminum powder are less affected by the changing temperature. The explosion pressure of gas-liquid-solid polyphase mixture decreases slightly with the increase of temperature, and the maximum explosion pressure rises first and then decreases. There is an optimum concentration ratio for the optimum explosion power. The lower explosive limit of gas-liquid-solid polyphase mixture decreases with the increase of temperature, and the lower limit of mixture tends to be stable after gasification of most volatile substances.
-
表 1 铝粉/空气混合物爆炸参数
Table 1. Explosion parameters of aluminum powder/air mixture
Temperature/℃ Ignition energy/J pmax/MPa (dp/dt)max/(MPa·s–1) Kst 21.7 90 0.858 62.659 17.008 24.4 90 0.817 65.625 17.813 31.0 90 0.861 62.705 17.020 35.0 90 0.856 68.205 18.513 37.2 90 0.912 71.910 19.519 40.0 90 0.791 67.469 18.314 45.0 90 0.812 75.292 20.437 50.0 90 0.773 71.381 19.375 表 2 铝粉/乙醚混合物爆炸参数
Table 2. Explosion parameters of aluminum powder/ether mixture
Temperature/℃ Ignition energy/J pmax/MPa (dp/dt)max/(MPa·s–1) Kst 21.7 90 0.971 106.616 28.939 25.0 90 0.943 109.204 29.642 30.0 90 0.946 120.792 32.788 32.9 90 0.924 124.851 33.889 34.0 90 0.919 126.464 34.327 35.0 90 0.918 127.204 34.528 40.0 90 0.914 124.704 33.849 48.0 90 0.910 113.233 30.736 50.0 90 0.923 106.087 28.796 表 3 铝粉/乙醚/硝基甲烷混合物爆炸参数
Table 3. Explosion parameters of aluminum powder/ether/nitromethane mixture
Temperature/℃ Ignition energy/J pmax/MPa (dp/dt)max/(MPa·s–1) Kst 21.7 90 1.114 108.675 29.498 25.0 90 1.199 105.969 28.764 30.2 90 1.189 112.852 30.632 35.0 90 1.161 134.557 36.524 41.6 90 1.129 132.174 35.877 45.4 90 1.090 116.910 31.734 50.0 90 0.996 110.454 29.948 表 4 乙醚/空气爆炸参数
Table 4. Explosion parameters of ether/air mixture
Temperature/℃ Ignition energy/J pmax/MPa (dp/dt)max/(MPa·s–1) 21.7 90 1.140 107.351 25.0 90 0.975 51.469 26.4 90 0.957 76.469 33.0 90 0.856 73.528 35.0 90 0.862 61.763 40.0 90 0.801 30.881 50.0 90 0.777 33.087 表 5 爆炸下限数据
Table 5. Lower explosion limit data
Temperature/℃ LEL/(g∙m–3) 21.7 180 24.3 175 27.8 160 33.2 155 37.5 150 42.5 150 51.0 150 -
[1] 王振刚, 张帆, 赵琳, 等. 硫磺粉尘燃爆危险性研究 [J]. 无机盐工业, 2015, 47(2): 56–59.WANG Z G, ZHANG F, ZHAO L, et al. Study on sulphur dust explosive hazard [J]. Inorganic Chemicals Industry, 2015, 47(2): 56–59. [2] 代濠源, 樊建春, 孙莉, 等. 初始温度对湿法成型硫磺燃烧爆炸特性影响的试验研究 [J]. 中国安全生产科学技术, 2015, 11(3): 24–28.DAI H Y, FAN J C, SUN L, et al. Experimental study on influence by initial temperature to combustion and explosion characteristics of wet-granulation sulfur [J]. Journal of Safety Science and Technology, 2015, 11(3): 24–28. [3] YU Y Q, FAN J C. Research on explosion characteristics of sulfur dust and risk control of the explosion [C]//2014 International Symposium on Safety Science and Technology. Beijing, 2014: 449–459. [4] KALMAN J, GLUMAC N G, KRIER H. Optical measurements of dispersion and ignition effects on particle concentration in constant volume dust explosion experiments [C]//Central States Section of the Combustion Institute Spring Technical Meeting 2014, Combustion Fundamentals and Applications. Tulsa, OK, 2014. [5] 袁然. 镁铝合金粉爆炸特性分析 [D]. 成都: 西南石油大学, 2016: 45–46. [6] 田甜. 密闭空间镁铝粉尘爆炸特性的实验研究 [D]. 大连: 大连理工大学, 2006: 75–76. [7] 何宁, 向聪, 李伟, 等. 硝基甲烷与铝粉混合物燃爆特性实验研究 [J]. 兵工学报, 2018, 39(1): 111–117. doi: 10.11809/bqzbgcxb2018.01.024HE N, XIANG C, LI W, et al. Experimental study on deflagrating characteristics of nitromethane-aluminum powder [J]. Acta Armamentarii, 2018, 39(1): 111–117. doi: 10.11809/bqzbgcxb2018.01.024 [8] 罗艾民, 张奇, 白春华, 等. 爆炸热作用所致的铝粉颗粒温度响应 [J]. 火炸药学报, 2005, 28(1): 35–38. doi: 10.3969/j.issn.1007-7812.2005.01.011LUO A M, ZHANG Q, BAI C H, et al. Temperature response of aluminum particle heated by thermal effects of explosive detonation [J]. Chinese Journal of Explosives & Propellants, 2005, 28(1): 35–38. doi: 10.3969/j.issn.1007-7812.2005.01.011 [9] 曹卫国. 褐煤粉尘爆炸特性实验及机理研究 [D]. 南京: 南京理工大学, 2016: 110–111. [10] 蒋丽, 白春华, 刘庆明. 气/固/液三相混合物燃烧转爆轰过程实验研究 [J]. 爆炸与冲击, 2010, 30(6): 588–592. doi: 10.11883/1001-1455(2010)06-0588-05JIANG L, BAI C H, LIU Q M. Experimental study on DDT process in 3-phase suspensions of gas/solid particle/liquid mist mixture [J]. Explosion and Shock Waves, 2010, 30(6): 588–592. doi: 10.11883/1001-1455(2010)06-0588-05 [11] PROUST C. A few fundamental aspects about ignition and flame propagation in dust clouds [J]. Journal of Loss Prevention in the Process Industries, 2006, 19(2/3): 104–120. [12] 王悦, 白春华. 乙醚云雾场燃爆参数实验研究 [J]. 爆炸与冲击, 2016, 36(4): 497–502. doi: 10.11883/1001-1455(2016)04-0497-06WANG Y, BAI C H. Experimental research on explosion parameters of diethyl ether mist [J]. Explosion and Shock Waves, 2016, 36(4): 497–502. doi: 10.11883/1001-1455(2016)04-0497-06 [13] 吴建星, 龚友成, 金湘. 环境温度对粉尘爆炸参数的影响 [J]. 工业安全与环保, 2007, 33(11): 32–33. doi: 10.3969/j.issn.1001-425X.2007.11.014WU J X, GONG Y C, JIN X. Influences of the environment temperature on dust explosion parameters [J]. Industrial Safety and Environmental Protection, 2007, 33(11): 32–33. doi: 10.3969/j.issn.1001-425X.2007.11.014 [14] OTT E E. Effects of fuel slosh and vibration on the flammability hazards of hydrocarbon turbine fuels within aircraft fuel tanks: AFAPL-TR-70-65 [R]. Wright-Patterson Air Force Base, OH: Air Force Aero Propulsion Laboratory, 1970.