Elastic Properties of ReN2 under High Pressure
-
摘要: 超硬材料在工业上具有广泛的应用前景,如切割器具、研磨材料及耐磨涂层等。作为5d过渡金属双氮化合物之一的ReN2由共价键、离子键及金属键混合而成,因而具有诸多如高硬度、高熔点、耐腐蚀等优异的物理性质,进而具有潜在的研究价值。采用密度泛函理论中的平面波赝势法计算了零温零压下C2/m-ReN2的结构性质,并首次研究了高压下C2/m-ReN2的力学结构稳定性及弹性性质。研究得出了C2/m-ReN2的弹性常数、弹性模量、德拜温度、声速随压强的变化关系,除个别弹性常数,这些物理量皆随压强的增加而增加。还预测了C2/m-ReN2的韧脆性,并估算了C2/m-ReN2的维氏硬度。Abstract: Super hard materials have wide applications in industry, such as cutting tools, abrasive materials, wear resistant coatings. As one of the 5d transition metals double nitrogen compound, ReN2 contains both covalent bond, ionic bond and metallic bonding. In view of its many excellent physical properties, such as high hardness, high melting point and corrosion resistance, ReN2 earns much research interests. This article has calculated the structural properties of C2/m-ReN2 under zero temperature and zero pressure using the plane wave pseudo-potential method of density functional theory, and has studied the mechanical structure stability and elastic properties of C2/m-ReN2 under high pressure for the first time. The relations of the elastic constants, various modulus of elasticity, Debye temperature and the sound speed of C2/m-ReN2 with the pressure have obtained. In addition to the individual elastic constants, these quantities increase with the increase in pressure. In addition, we have also predicted the toughness and brittleness of C2/m-ReN2, and have estimated the Vickers hardness of C2/m-ReN2.
-
Key words:
- ReN2 /
- mechanical structure /
- elastic property /
- hardness
-
全浸水带间隙发射作为一种新的水下发射方式[1],通过间隙燃气在膛内贴壁运动,卷吸回流后逐渐汇聚成弹前气幕,排出弹前水柱,将射弹在膛口的发射环境由水介质转化为气体介质。当气体射流流出枪口后,膛口处射流迅速膨胀成球形气体空腔,射弹穿过气体空腔与水介质接触,产生强烈的冲击载荷。水下高速射弹的弹体主要由硬铝合金尾杆和钨合金头部组成,两者镶嵌连接,连接强度有限,入水瞬间弹头会承受巨大冲击,因此射弹的入水冲击载荷成为水下射弹设计中的一个重要问题。
Karman[2]最先开始对入水冲击现象进行研究,采用动量定理并引入附加质量的概念,推导出入水冲击载荷的计算公式。Wagner[3]将Karman的方法理论化,提出了近似平板理论及自相似解法,得出了冲击压力在结构沾湿面的分布情况,使理论分析更加符合实际情况,为后来学者的理论研究奠定了基础。在国内,秦洪德等[4]、王永虎等[5]对入水冲击问题的现状和进展进行了详细的分析。宋保维等[6]基于不可压缩的非定常势流理论,建立了空投水雷入水冲击计算的数学模型。卢炽华等[7]利用不同浸深的附加质量,对刚性细长体斜姿态落水冲击进行建模,得出其入水角很小,会使弹体处在最危险的状态。王永虎等[8-9]先后对刚性尖拱体垂直姿态高速入水和斜入水的冲击理论进行了建模和仿真。魏卓慧等[10]建立了刚性截锥弹体垂直入水冲击载荷的数学模型,并对其进行了数值计算。陈诚等[11]对超空泡航行器倾斜入水冲击载荷进行了试验研究,得出了峰值时刻的阻力系数。朱珠等[12]利用商业软件FLUENT,建立了柱体回转体高速入水冲击的数值模拟模型,得到了速度对入水冲击载荷的影响规律。然而以上研究主要针对由空中入水的冲击载荷分析,对于水下入水冲击问题研究较少。本工作在此前提条件下,计算分析全水下发射高速射弹入水的冲击载荷,这对于水下发射武器研究具有一定的现实意义。
本研究拟建立锥形弹体水平及斜入水的冲击载荷理论模型,模型中考虑弹体重力、弹体浮力、附加质量、弹头锥角及入水攻角的影响,对不同头部结构参数的锥形弹体以不同入水速度入水的冲击载荷进行计算,分析入水速度、弹头锥角和入水攻角对冲击载荷的影响。研究结果对于弹体入水冲击载荷的预测及全水下发射方式发射的射弹头部结构设计具有参考价值。
1. 数学模型
1.1 射弹水平入水
假设射弹为刚体,不考虑射弹入水时空泡的影响,根据动量定理,射弹高速入水冲击时的动量方程为
Mv0=(M+m)v+Mgt+Fbt+Fdt (1) 式中:M为射弹的质量,m为射弹的附加质量,
Fd 为射弹入水时受到的阻力,Fb 为射弹所受的浮力。对式(1)等号两边进行微分,得到射弹入水冲击时的动力学方程
(M+m)d2hdt2+dmdtdhdt+12ρCdA(dhdt)2=0 (2) 式中:h为射弹侵入的距离,A为阻力面积,
Cd 为阻力系数,ρ 为水的密度。射弹沿
x 轴水平入水时,由于入水冲击过程的瞬时性,入水初期其运动方向基本保持不变,流体动力主要作用于射弹轴线方向,在射弹轴线方向上重力和浮力对射弹影响很小,基本可忽略不计。射弹入水冲击过程中,射弹浸没在水中的体积会排挤液面流体产生隆起现象,如图1所示,有效液面决定了自由水平液面的抬高程度,这取决于射弹锥头的外形和入水角等初始状态。沾湿因子定义为有效液面与实际液面的比值。
利用轴长体假设和Tayler关于在不同浸深时附加质量的表达式[13],参考垂直入水相关文献[10, 14],求出锥形射弹入水的附加质量为
m=43ρ(Cwh)3tan3β (3) A=π(Cwh)2tan2β (4) dmdt=dmdhdhdt=4ρtan3β(Cwh)2Cwdhdt (5) 式中:
Cw 为沾湿因子,β 为射弹头部的半锥角,如图1所示。将式(3)~式(5)代入式(2),得到总方程为
[M+43ρ(Cwh)3tan3β]d2hdt2+4ρtan3β(Cwh)2Cw(dhdt)2+12ρCdπ(Cwh)2tan2β(dhdt)2=0 (6) 采用MATLAB软件,利用龙格-库塔方法进行求解,可以得到弹体入水时的冲击载荷。
1.2 带攻角入水
如图2所示,采用全新的发射方式时,燃气排出并在膛口形成球形气体空腔。以地面为坐标系,枪口斜向上(即
y 轴正方向)、斜向下(即y 轴负方向)发射时,根据圆切线定理,穿过球形气腔仍可看作垂直于液面入水,然而射弹入水在有攻角的情况下,轴向上会受到重力和浮力的作用分力影响,攻角正负值相反时,重力与浮力在射弹轴向上的作用分力方向也相反。其他条件与水平入水时保持不变,攻角为正时,根据动量方程,得到动力学方程
(M+m)d2hdt2+dmdtdhdt+12ρCdA(dhdt)2+Mgsinα−Fbsinα=0 (7) 式中:α为射弹攻角,射弹斜向上发射时为正值,斜向下时为负值。
射弹所受浮力为
Fb=13πρg(Cwh)3tan2β (8) 当攻角为正值时,得到的总方程为
[M+43ρ(Cwh)3tan3β]d2hdt2+4ρtan3β(Cwh)2Cw(dhdt)2+12ρCdπ(Cwh)2tan2β(dhdt)2+Mgsinα−13πρg(Cwh)3tan2βsinα=0 (9) 同理,攻角为负值时的总方程为
[M+43ρ(Cwh)3tan3β]d2hdt2+4ρtan3β(Cwh)2Cw(dhdt)2+12ρCdπ(Cwh)2tan2β(dhdt)2−Mgsinα+13πρg(Cwh)3tan2βsinα=0 (10) 对式(9)、式(10)进行求解,可以得到不同攻角下的入水冲击载荷。
2. 计算结果与分析
由于水下射弹的质量较轻,入水速度较大,水下超空泡射弹入水平均速度约为600 m/s,因此入水速度对射弹入水冲击载荷的影响很大。本计算中,设射弹质量为0.14 kg,射弹头部半锥角为6°,计算得到不同速度时射弹的入水冲击载荷曲线,如图3所示,其中用射弹加速度反映入水冲击载荷。可以看出:射弹的入水冲击载荷先增大后减小,载荷变化主要发生在射弹入水前1 ms,最后渐渐趋于稳定;入水速度越大,冲击载荷峰值越大,入水后达到峰值的时间越短。此外,计算了不同速度下的入水冲击载荷峰值,如图4所示。入水速度在400~700 m/s范围时,射弹入水冲击载荷峰值一般为103g量级(g为重力加速度)。从冲击载荷峰值与速度的关系可以得出入水冲击载荷的峰值与速度基本呈线性关系。
设射弹质量为0.14 kg,通过计算获得了不同锥角的锥形射弹以600 m/s入水时的冲击载荷曲线,如图5所示。可以看出:射弹的入水冲击载荷先增大后减小,最后趋于稳定;半锥角
β 越大,冲击载荷峰值越大,并且入水后达到峰值的时间越短。改变半锥角,计算出不同半锥角情况下射弹入水冲击载荷峰值,如图6所示。从冲击载荷峰值与半锥角的关系可以得出入水冲击载荷峰值与半锥角基本呈线性关系。当射弹质量为0.14 kg,入水速度为600 m/s,攻角
α 分别取45°、−45 °和0°(即水平入水)时,计算得到的射弹入水冲击载荷曲线如图7所示。可见,3条曲线基本重叠,差值在1g量级,相比于速度和半锥角对冲击载荷的影响,攻角对冲击载荷的影响几乎可以忽略不计。此外,射弹在高速入水状态下,从液面进入水中的实际深度与理想深度存在一定的偏差,为了表达该误差,引入沾湿因子,沾湿因子的取值对冲击载荷的结果也存在影响。沾湿因子不同时射弹的入水冲击载荷如图8所示。从图8可以看出:沾湿因子越大,入水冲击载荷峰值越大;但沾湿因子对入水冲击载荷的影响较小,当沾湿因子变化值为0.1时,入水冲击载荷的变化在10%以内。
3. 结 论
(1)射弹头部锥角相同时,入水冲击载荷峰值与速度呈正线性相关,入水速度越大,冲击载荷达到峰值的时间越短;射弹入水速度相同时,入水冲击载荷的大小与锥角呈正线性相关,锥角越大,冲击载荷达到峰值的时间越短。
(2)射弹锥角和入水速度相同、入水攻角不同时,入水冲击载荷曲线与水平入水曲线基本重合,说明射弹重力和浮力在轴向上对入水冲击载荷的影响相对入水阻力几乎可以忽略不计。当射弹带有攻角入水后,重力和浮力更多的是对射弹产生径向力矩影响。
(3)沾湿因子越大,入水冲击载荷峰值越大,但对入水冲击载荷影响较小,当沾湿因子变化为0.1时,入水冲击载荷的变化在10%以内。沾湿因子作为一个变量,其大小反过来也取决于入水冲击载荷,入水冲击载荷越大,沾湿因子也越大。
(4)理论模型借鉴了高速弹体垂直入水的理论模型,数值模拟计算结果与已报道的高速射弹垂直入水冲击载荷数值计算和仿真结果高度一致,验证了本数学建模和数值计算的准确性。
(5)探讨了全水下发射高速射弹入水瞬间的冲击载荷,高速射弹入水后形成超空泡,冲击载荷迅速减小。本工作对射弹未形成超空泡的情况进行了模型推导和数值模拟计算,对形成超空泡之前的理论研究具有重要意义。
-
表 1 在p=0 GPa和T=0 K下的平衡晶格参数a、b、c及
β ,平衡体积V0,体模量B0,体模量对压强的一阶导数B′0 及其他理论值[13, 27]Table 1. Equilibrium lattice parameters a, b, c and
β , equilibrium volume V0, bulk modulus B0, and its pressure derivationB′0 at p=0 GPa and T=0 K, together with other theoretical results [13, 27]Method a/nm b/nm c/nm β/(°) V0/nm3 B0/GPa B0′/GPa This work 0.682 0.282 0.939 142.38 0.027 59 361 4.78 Ref. [13] 0.682 0.284 0.936 142.30 0.027 60 Ref. [27] 0.683 0.284 0.939 0.027 77 表 2 在p=0 GPa和T=0 K下的体模量B、剪切模量G、杨氏模量E、泊松比
σ 、维氏硬度HV及其他理论值[13, 27]Table 2. Bulk modulus B, shear modulus G, Young’s modulus E, Poisson’s ratio
σ and Vickers hardness HV at p=0 GPa and T=0 K, together with other theoretical results[13, 27]Method B/GPa G/GPa E/GPa σ Hv /GPa This work 370 242 596 0.23 27.66 Ref. [13] 369 217 Ref. [27] 376 210 531 0.26 -
[1] OYAMA S T. Crystal structure and chemical reactivity of transition metal carbides and nitrides [J]. Journal of Solid State Chemistry, 1992, 96(2): 442–445. doi: 10.1016/S0022-4596(05)80279-8 [2] LÉVY F, HONES P, SCHMID P E, et al. Electronic states and mechanical properties in transition metal nitrides [J]. Surface and Coatings Technology, 1999, 120/121: 284–290. doi: 10.1016/S0257-8972(99)00498-3 [3] IVANOVSKII A L. Platinum group metal nitrides and carbides: synthesis, properties and simulation [J]. Russian Chemical Reviews, 2009, 78(4): 303–318. doi: 10.1070/RC2009v078n04ABEH004036 [4] GILMAN J J, CUMBERLAND R W, KANER R B. Design of hard crystals [J]. International Journal of Refractory Metals and Hard Materials, 2006, 24(1/2): 1–5. [5] HAINES J, LEGER J M, BOCQUILLON G. Synthesis and design of superhard materials [J]. Annual Review of Materials Research, 2001, 31(1): 1–23. doi: 10.1146/annurev.matsci.31.1.1 [6] CROWHURST J C, GONCHAROV A F, SADIGH B, et al. Synthesis and characterization of the nitrides of platinum and iridium [J]. Science, 2006, 311(5765): 1275–1278. doi: 10.1126/science.1121813 [7] GREGORYANZ E, SANLOUP C, SOMAYAZULU M, et al. Synthesis and characterization of a binary noble metal nitride [J]. Nature Materials, 2004, 3(5): 294–297. doi: 10.1038/nmat1115 [8] YOUNG A F, SANLOUP C, GREGORYANZ E, et al. Synthesis of novel transition metal nitrides IrN2 and OsN2 [J]. Physical Review Letters, 2006, 96(15): 155501. doi: 10.1103/PhysRevLett.96.155501 [9] ZHAO E, WU Z. Structural, electronic and mechanical properties of ReN2 from first principles [J]. Computational Materials Science, 2008, 44(2): 531–535. doi: 10.1016/j.commatsci.2008.04.016 [10] LI Y, ZENG Z. New potential super-incompressible phase of ReN2 [J]. Chemical Physics Letters, 2009, 474(1/2/3): 93–96. [11] DU X P, WANG Y X, LO V C. Investigation of tetragonal ReN2 and WN2 with high shear moduli from first-principles calculations [J]. Physics Letters A, 2010, 374(25): 2569–2574. doi: 10.1016/j.physleta.2010.04.020 [12] KAWAMURA F, YUSA H, TANIGUCHI T. Synthesis of rhenium nitride crystals with MoS2 structure [J]. Applied Physics Letters, 2012, 100(25): 251910. doi: 10.1063/1.4729586 [13] WANG Y, YAO T, YAO J L, et al. Does the real ReN2 have the MoS2 structure? [J]. Physical Chemistry Chemical Physics, 2013, 15(1): 183–187. doi: 10.1039/C2CP43010J [14] WANG Y, LV J, ZHU L, et al. Crystal structure prediction via particle-swarm optimization [J]. Physical Review B, 2010, 82(9): 094116. doi: 10.1103/PhysRevB.82.094116 [15] BOUHEMADOU A, KHENATA R. Pseudo-potential calculations of structural and elastic properties of spinel oxides ZnX2O4 (X= Al, Ga, In) under pressure effect [J]. Physics Letters A, 2006, 360(2): 339–343. doi: 10.1016/j.physleta.2006.08.008 [16] LOUAIL L, MAOUCHE D, ROUMILI A, et al. Calculation of elastic constants of 4d transition metals [J]. Materials Letters, 2004, 58(24): 2975–2978. doi: 10.1016/j.matlet.2004.04.033 [17] SEGALL M D, LINDAN P J D, PROBERT M J, et al. First-principles simulation:ideas, illustrations and the CASTEP code [J]. Journal of Physics: Condensed Matter, 2002, 14(11): 2717–2744. doi: 10.1088/0953-8984/14/11/301 [18] VANDERBILT D. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism [J]. Physical Review B, 1990, 41(11): 7892–7895. doi: 10.1103/PhysRevB.41.7892 [19] PERDEW J P, BURKE K, ERNZERHOF M. Generalized gradient approximation made simple [J]. Physical Review Letters, 1996, 77(18): 3865–3868. doi: 10.1103/PhysRevLett.77.3865 [20] PERDEW J P, CHEVARY J A, VOSKO S H, et al. Atoms, molecules, solids, and surfaces:Applications of the generalized gradient approximation for exchange and correlation [J]. Physical Review B, 1992, 46(11): 6671–6687. doi: 10.1103/PhysRevB.46.6671 [21] PFROMMER B G, COTE M, LOUIE S G, et al. Relaxation of crystals with the quasi-Newton method [J]. Journal of Computational Physics, 1997, 131(1): 233–240. doi: 10.1006/jcph.1996.5612 [22] MONKHORST H J, PACK J D. Special points for Brillouin-zone integrations [J]. Physical Review B, 1976, 13(12): 5188–5192. doi: 10.1103/PhysRevB.13.5188 [23] WALLACE D C. Thermodynamics of crystals [M]. New York: Wiley, 1972: 582. [24] WANG J, LI J, YIP S, et al. Mechanical instabilities of homogeneous crystals [J]. Physical Review B, 1995, 52(17): 12627–12635. doi: 10.1103/PhysRevB.52.12627 [25] BARRON T H K, KLEIN M L. Second-order elastic constants of a solid under stress [J]. Proceedings of the Physical Society, 1965, 85(3): 523–532. doi: 10.1088/0370-1328/85/3/313 [26] BIRCH F. Finite elastic strain of cubic crystals [J]. Physical Review, 1947, 71(11): 809–824. doi: 10.1103/PhysRev.71.809 [27] ZHAO Z L, BAO K, LI D, et al. Nitrogen concentration driving the hardness of rhenium nitrides [J]. Scientific Reports, 2014, 4(1): 4797. [28] WATT J P. Hashin-Shtrikman bounds on the effective elastic moduli of polycrystals with orthorhombic symmetry [J]. Journal of Applied Physics, 1979, 50(10): 6290–6295. doi: 10.1063/1.325768 [29] HILL R. The elastic behaviour of a crystalline aggregate [J]. Proceedings of the Physical Society, Section A, 1952, 65(5): 349. doi: 10.1088/0370-1298/65/5/307 [30] PUGH S F.XCII Relations between the elastic moduli and the plastic properties of polycrystalline pure metals [J]. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 1954, 45(367): 823–843. doi: 10.1080/14786440808520496 [31] FRANTSEVICH I N, VORONOV F F, BOKUTA S A. Elastic constants and elastic moduli of metals and insulators [M]. Kiev: Naukova Dumka, 1983: 60–180. [32] IVANOVSKII A L. Microhardness of compounds of rhenium with boron, carbon, and nitrogen [J]. Journal of Superhard Materials, 2012, 34(2): 75–80. doi: 10.3103/S1063457612020013 [33] TIAN Y J, XU B, ZHAO Z S. Microscopic theory of hardness and design of novel superhard crystals [J]. International Journal of Refractory Metals and Hard Materials, 2012, 33: 93–106. doi: 10.1016/j.ijrmhm.2012.02.021 -