高压下ReN2的弹性性质

雷慧茹 张立宏

雷慧茹, 张立宏. 高压下ReN2的弹性性质[J]. 高压物理学报, 2019, 33(4): 042401. doi: 10.11858/gywlxb.20180647
引用本文: 雷慧茹, 张立宏. 高压下ReN2的弹性性质[J]. 高压物理学报, 2019, 33(4): 042401. doi: 10.11858/gywlxb.20180647
LEI Huiru, ZHANG Lihong. Elastic Properties of ReN2 under High Pressure[J]. Chinese Journal of High Pressure Physics, 2019, 33(4): 042401. doi: 10.11858/gywlxb.20180647
Citation: LEI Huiru, ZHANG Lihong. Elastic Properties of ReN2 under High Pressure[J]. Chinese Journal of High Pressure Physics, 2019, 33(4): 042401. doi: 10.11858/gywlxb.20180647

高压下ReN2的弹性性质

doi: 10.11858/gywlxb.20180647
基金项目: 山西工程技术学院科研启动项目(201706002)
详细信息
    作者简介:

    雷慧茹(1988-),女,硕士,讲师,主要从事高硬度材料及半导体器件材料研究.E-mail:207274060@163.com

  • 中图分类号: O521.21

Elastic Properties of ReN2 under High Pressure

  • 摘要: 超硬材料在工业上具有广泛的应用前景,如切割器具、研磨材料及耐磨涂层等。作为5d过渡金属双氮化合物之一的ReN2由共价键、离子键及金属键混合而成,因而具有诸多如高硬度、高熔点、耐腐蚀等优异的物理性质,进而具有潜在的研究价值。采用密度泛函理论中的平面波赝势法计算了零温零压下C2/m-ReN2的结构性质,并首次研究了高压下C2/m-ReN2的力学结构稳定性及弹性性质。研究得出了C2/m-ReN2的弹性常数、弹性模量、德拜温度、声速随压强的变化关系,除个别弹性常数,这些物理量皆随压强的增加而增加。还预测了C2/m-ReN2的韧脆性,并估算了C2/m-ReN2的维氏硬度。

     

  • 图  0 K条件下C2/m-ReN2的弹性常数与压强p的变化关系

    Figure  1.  Relationship between the elastic constants and the pressure p at 0 K

    图  0 K条件下C2/m-ReN2的弹性模量(BEG)及德拜温度${\varTheta}$与压强p的变化关系

    Figure  2.  Pressure dependence of the bulk modulus B, Young’s modulus E, shear modulus G and Debye temperature ${\varTheta}$ for C2/m-ReN2 at 0 K

    图  0 K条件下C2/m-ReN2的韧脆性与压强p的变化关系

    Figure  3.  Pressure dependence of the toughness and brittleness for C2/m-ReN2 at 0 K

    图  0 K条件下C2/m-ReN2的各个声速(vpvsvm)与压强p的变化关系

    Figure  4.  The compressional wave velocity, shear wave velocity and averaged wave velocity for C2/m-ReN2 as a function of pressure at 0 K

    表  1  在p=0 GPa和T=0 K下的平衡晶格参数a、b、c及${\;\beta}$,平衡体积V0,体模量B0,体模量对压强的一阶导数${B_0'}$及其他理论值[13, 27]

    Table  1.   Equilibrium lattice parameters a, b, c and ${\;\beta}$, equilibrium volume V0, bulk modulus B0, and its pressure derivation ${B_0'}$ at p=0 GPa and T=0 K, together with other theoretical results [13, 27]

    Methoda/nmb/nmc/nm$\beta$/(°)V0/nm3B0/GPaB0′/GPa
    This work0.6820.2820.939142.380.027 593614.78
    Ref. [13]0.6820.2840.936142.300.027 60
    Ref. [27]0.6830.2840.9390.027 77
    下载: 导出CSV

    表  2  在p=0 GPa和T=0 K下的体模量B、剪切模量G、杨氏模量E、泊松比$\sigma $、维氏硬度HV及其他理论值[13, 27]

    Table  2.   Bulk modulus B, shear modulus G, Young’s modulus E, Poisson’s ratio $\sigma $ and Vickers hardness HV at p=0 GPa and T=0 K, together with other theoretical results[13, 27]

    MethodB/GPaG/GPaE/GPa$\sigma $Hv/GPa
    This work3702425960.2327.66
    Ref. [13]369217
    Ref. [27]3762105310.26
    下载: 导出CSV
  • [1] OYAMA S T. Crystal structure and chemical reactivity of transition metal carbides and nitrides [J]. Journal of Solid State Chemistry, 1992, 96(2): 442–445. doi: 10.1016/S0022-4596(05)80279-8
    [2] LÉVY F, HONES P, SCHMID P E, et al. Electronic states and mechanical properties in transition metal nitrides [J]. Surface and Coatings Technology, 1999, 120/121: 284–290. doi: 10.1016/S0257-8972(99)00498-3
    [3] IVANOVSKII A L. Platinum group metal nitrides and carbides: synthesis, properties and simulation [J]. Russian Chemical Reviews, 2009, 78(4): 303–318. doi: 10.1070/RC2009v078n04ABEH004036
    [4] GILMAN J J, CUMBERLAND R W, KANER R B. Design of hard crystals [J]. International Journal of Refractory Metals and Hard Materials, 2006, 24(1/2): 1–5.
    [5] HAINES J, LEGER J M, BOCQUILLON G. Synthesis and design of superhard materials [J]. Annual Review of Materials Research, 2001, 31(1): 1–23. doi: 10.1146/annurev.matsci.31.1.1
    [6] CROWHURST J C, GONCHAROV A F, SADIGH B, et al. Synthesis and characterization of the nitrides of platinum and iridium [J]. Science, 2006, 311(5765): 1275–1278. doi: 10.1126/science.1121813
    [7] GREGORYANZ E, SANLOUP C, SOMAYAZULU M, et al. Synthesis and characterization of a binary noble metal nitride [J]. Nature Materials, 2004, 3(5): 294–297. doi: 10.1038/nmat1115
    [8] YOUNG A F, SANLOUP C, GREGORYANZ E, et al. Synthesis of novel transition metal nitrides IrN2 and OsN2 [J]. Physical Review Letters, 2006, 96(15): 155501. doi: 10.1103/PhysRevLett.96.155501
    [9] ZHAO E, WU Z. Structural, electronic and mechanical properties of ReN2 from first principles [J]. Computational Materials Science, 2008, 44(2): 531–535. doi: 10.1016/j.commatsci.2008.04.016
    [10] LI Y, ZENG Z. New potential super-incompressible phase of ReN2 [J]. Chemical Physics Letters, 2009, 474(1/2/3): 93–96.
    [11] DU X P, WANG Y X, LO V C. Investigation of tetragonal ReN2 and WN2 with high shear moduli from first-principles calculations [J]. Physics Letters A, 2010, 374(25): 2569–2574. doi: 10.1016/j.physleta.2010.04.020
    [12] KAWAMURA F, YUSA H, TANIGUCHI T. Synthesis of rhenium nitride crystals with MoS2 structure [J]. Applied Physics Letters, 2012, 100(25): 251910. doi: 10.1063/1.4729586
    [13] WANG Y, YAO T, YAO J L, et al. Does the real ReN2 have the MoS2 structure? [J]. Physical Chemistry Chemical Physics, 2013, 15(1): 183–187. doi: 10.1039/C2CP43010J
    [14] WANG Y, LV J, ZHU L, et al. Crystal structure prediction via particle-swarm optimization [J]. Physical Review B, 2010, 82(9): 094116. doi: 10.1103/PhysRevB.82.094116
    [15] BOUHEMADOU A, KHENATA R. Pseudo-potential calculations of structural and elastic properties of spinel oxides ZnX2O4 (X= Al, Ga, In) under pressure effect [J]. Physics Letters A, 2006, 360(2): 339–343. doi: 10.1016/j.physleta.2006.08.008
    [16] LOUAIL L, MAOUCHE D, ROUMILI A, et al. Calculation of elastic constants of 4d transition metals [J]. Materials Letters, 2004, 58(24): 2975–2978. doi: 10.1016/j.matlet.2004.04.033
    [17] SEGALL M D, LINDAN P J D, PROBERT M J, et al. First-principles simulation:ideas, illustrations and the CASTEP code [J]. Journal of Physics: Condensed Matter, 2002, 14(11): 2717–2744. doi: 10.1088/0953-8984/14/11/301
    [18] VANDERBILT D. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism [J]. Physical Review B, 1990, 41(11): 7892–7895. doi: 10.1103/PhysRevB.41.7892
    [19] PERDEW J P, BURKE K, ERNZERHOF M. Generalized gradient approximation made simple [J]. Physical Review Letters, 1996, 77(18): 3865–3868. doi: 10.1103/PhysRevLett.77.3865
    [20] PERDEW J P, CHEVARY J A, VOSKO S H, et al. Atoms, molecules, solids, and surfaces:Applications of the generalized gradient approximation for exchange and correlation [J]. Physical Review B, 1992, 46(11): 6671–6687. doi: 10.1103/PhysRevB.46.6671
    [21] PFROMMER B G, COTE M, LOUIE S G, et al. Relaxation of crystals with the quasi-Newton method [J]. Journal of Computational Physics, 1997, 131(1): 233–240. doi: 10.1006/jcph.1996.5612
    [22] MONKHORST H J, PACK J D. Special points for Brillouin-zone integrations [J]. Physical Review B, 1976, 13(12): 5188–5192. doi: 10.1103/PhysRevB.13.5188
    [23] WALLACE D C. Thermodynamics of crystals [M]. New York: Wiley, 1972: 582.
    [24] WANG J, LI J, YIP S, et al. Mechanical instabilities of homogeneous crystals [J]. Physical Review B, 1995, 52(17): 12627–12635. doi: 10.1103/PhysRevB.52.12627
    [25] BARRON T H K, KLEIN M L. Second-order elastic constants of a solid under stress [J]. Proceedings of the Physical Society, 1965, 85(3): 523–532. doi: 10.1088/0370-1328/85/3/313
    [26] BIRCH F. Finite elastic strain of cubic crystals [J]. Physical Review, 1947, 71(11): 809–824. doi: 10.1103/PhysRev.71.809
    [27] ZHAO Z L, BAO K, LI D, et al. Nitrogen concentration driving the hardness of rhenium nitrides [J]. Scientific Reports, 2014, 4(1): 4797.
    [28] WATT J P. Hashin-Shtrikman bounds on the effective elastic moduli of polycrystals with orthorhombic symmetry [J]. Journal of Applied Physics, 1979, 50(10): 6290–6295. doi: 10.1063/1.325768
    [29] HILL R. The elastic behaviour of a crystalline aggregate [J]. Proceedings of the Physical Society, Section A, 1952, 65(5): 349. doi: 10.1088/0370-1298/65/5/307
    [30] PUGH S F.XCII Relations between the elastic moduli and the plastic properties of polycrystalline pure metals [J]. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 1954, 45(367): 823–843. doi: 10.1080/14786440808520496
    [31] FRANTSEVICH I N, VORONOV F F, BOKUTA S A. Elastic constants and elastic moduli of metals and insulators [M]. Kiev: Naukova Dumka, 1983: 60–180.
    [32] IVANOVSKII A L. Microhardness of compounds of rhenium with boron, carbon, and nitrogen [J]. Journal of Superhard Materials, 2012, 34(2): 75–80. doi: 10.3103/S1063457612020013
    [33] TIAN Y J, XU B, ZHAO Z S. Microscopic theory of hardness and design of novel superhard crystals [J]. International Journal of Refractory Metals and Hard Materials, 2012, 33: 93–106. doi: 10.1016/j.ijrmhm.2012.02.021
  • 加载中
图(4) / 表(2)
计量
  • 文章访问数:  5379
  • HTML全文浏览量:  2861
  • PDF下载量:  30
出版历程
  • 收稿日期:  2018-10-08
  • 修回日期:  2018-11-16

目录

    /

    返回文章
    返回