高压下Ir2P晶体结构预测与物理性质

李鑫 马雪姣 高文泉 刘艳辉

李鑫, 马雪姣, 高文泉, 刘艳辉. 高压下Ir2P晶体结构预测与物理性质[J]. 高压物理学报, 2019, 33(1): 011103. doi: 10.11858/gywlxb.20180645
引用本文: 李鑫, 马雪姣, 高文泉, 刘艳辉. 高压下Ir2P晶体结构预测与物理性质[J]. 高压物理学报, 2019, 33(1): 011103. doi: 10.11858/gywlxb.20180645
LI Xin, MA Xuejiao, GAO Wenquan, LIU Yanhui. Evolution of Crystal Structures and Electronic Properties for Ir2P under High Pressure[J]. Chinese Journal of High Pressure Physics, 2019, 33(1): 011103. doi: 10.11858/gywlxb.20180645
Citation: LI Xin, MA Xuejiao, GAO Wenquan, LIU Yanhui. Evolution of Crystal Structures and Electronic Properties for Ir2P under High Pressure[J]. Chinese Journal of High Pressure Physics, 2019, 33(1): 011103. doi: 10.11858/gywlxb.20180645

高压下Ir2P晶体结构预测与物理性质

doi: 10.11858/gywlxb.20180645
基金项目: 国家自然科学基金(11764043,11474125,51202084,11504007,11404035);吉林省科技厅自然科学基金面上项目(20180101226JC)
详细信息
    作者简介:

    李 鑫(1993-),女,硕士,主要从事材料的第一性原理计算研究. E-mail: 751686624@qq.com

    通讯作者:

    刘艳辉(1971-),女,博士,主要从事材料设计与物性研究. E-mail: yhliu@ybu.edu.cn

  • 中图分类号: O521.2

Evolution of Crystal Structures and Electronic Properties for Ir2P under High Pressure

  • 摘要: 在压强为0~100 GPa范围内,运用CALYPSO结构搜索技术,结合基于密度泛函理论中的第一性原理方法,对Ir2P晶体进行结构预测,并对预测出的晶体结构和物理性质进行细致的研究。在常压下,预测得出α-Ir2P相具有立方结构,其空间群为Fm3m,与实验所得结构一致;压强为86.4 GPa时,发生结构相变,由α-Ir2P相转变为β-Ir2P相,为四方结构,其空间群为I4/mmm。在相变过程中,晶体体积发生坍塌,并且出现不连续变化的一级相变。电子性质计算表明,86.4 GPa时,预测的β-Ir2P相中导带和价带在费米面附近发生交叠,表明其结构具有金属性质;电子局域函数计算表明,β-Ir2P相具有丰富的化学键,包括极性共价键、金属键和离子键;Bader电荷转移计算得出,由于Ir原子具有较强的电负性,β-Ir2P相中每个P原子向每个Ir原子电荷转移0.19e

     

  • 图  Ir2P的焓差曲线以及α-Ir2P相和β-Ir2P相体积随压强变化曲线

    Figure  1.  Calculated enthalpies per formula unit (f.u.) of pressure with respect to α-Ir2P and the calculated pressure versus volume phase diagram of α-Ir2P and β-Ir2P

    图  α-Ir2P相和β-Ir2P相的晶体结构

    Figure  2.  Crystal structures of α-Ir2P and β-Ir2P

    图  86.4 GPa时β-Ir2P相的声子谱和声子态密度

    Figure  3.  Phonon-dispersion curves and the PHDOS of β-Ir2P at 86.4 GPa

    图  86.4 GPa下β-Ir2P相的能带结构和电子态密度

    Figure  4.  Band structure and partial DOS of β-Ir2P phase at 86.4 GPa

    图  86.4 GPa下β-Ir2P相的电子局域函数

    Figure  5.  Electron localization function of β-Ir2P phase at 86.4 GPa

    表  1  α-Ir2P相和β-Ir2P相的平衡态晶格常数和原子位置

    Table  1.   Lattice parameters and atomic coordinate of α-Ir2P and β-Ir2P

    Phase Pressure/GPa Space group Lattice parameters Wyckoff position
    Atoms Site
    α-Ir2P 0 Fm3m a=5.622 Å(5.535 Å*), b=c=5.622 Å Ir1 8c(0.250, 0.250, 0.250)
    α=β=γ=90.0° P1 4a(0, 0, 0)
    β-Ir2P 86.4 I4/mmm a=b=2.694 Å, c=9.461 Å Ir1 4e(0.500, 0.500, 0.146)
    α=β=γ=90.0° P1 2a(0.500, 0.500, 0.500)
     Note: The asterisk represents the experimental data from Ref. [13].
    下载: 导出CSV

    表  2  86.4 GPa下β-Ir2P相的Bader电荷转移

    Table  2.   Calculated Bader charges of β-Ir2P phase at 86.4 GPa

    Space group Pressure/GPa Atom Number Charge value/e Charge transfer/e
    I4/mmm 86.4 GPa Ir 2 9.19 –0.19
    P 1 4.62 0.38
    下载: 导出CSV
  • [1] HENKES A E, VASQUEZ Y, SCHAAK R E. Converting metals into phosphides: a general strategy for the synthesis of metal phosphide nanocrystals [J]. Journal of the American Chemical Society, 2007, 129(7): 1896–1897. doi: 10.1021/ja068502l
    [2] MAUVERNAY B, DOUBLET M L, MONCONDUIT L. Redox mechanism in the binary transition metal phosphide Cu3P [J]. Journal of Physics and Chemistry of Solids, 2006, 67(5/6): 1252–1257.
    [3] BROCK S L, SENEVIRATHNE K. Recent developments in synthetic approaches to transition metal phosphide nanoparticles for magnetic and catalytic applications [J]. Journal of Solid State Chemistry, 2008, 181(7): 1552–1559. doi: 10.1016/j.jssc.2008.03.012
    [4] OYAMA S T, GOTT T, ZHAO H, et al. Transition metal phosphide hydroprocessing catalysts: a review [J]. Catalysis Today, 2009, 143(1/2): 94–107.
    [5] HALL J W, MEMBRENO N, WU J, et al. Low-temperature synthesis of amorphous FeP2 and its use as anodes for Li ion batteries [J]. Journal of the American Chemical Society, 2012, 134(12): 5532–5535. doi: 10.1021/ja301173q
    [6] BILTZ W, WEIBKE F, MAY E, et al. Alloyability of platinum and phosphorus [J]. Zeitschrift fur Anorganische und Allgemeine Chemie, 1935, 223(2): 129–143. doi: 10.1002/zaac.v223:2
    [7] ZHANG X, QIN J, SUN X, et al. First-principles structural design of superhard material of ZrB4 [J]. Physical Chemistry Chemical Physics, 2013, 15(48): 20894–20899. doi: 10.1039/c3cp53893a
    [8] KANER R B, GILMAN J J, TOLBERT S H. Designing superhard materials [J]. Science, 2005, 308(5726): 1268–1269. doi: 10.1126/science.1109830
    [9] SHI Y, ZHANG B. Correction: Recent advances in transition metal phosphide nanomaterials: synthesis and applications in hydrogen evolution reaction [J]. Chemical Society Reviews, 2016, 45(6): 1781–1781. doi: 10.1039/C6CS90013E
    [10] CARENCO S, PORTEHAULT D, BOISSIERE C, et al. Nanoscaled metal borides and phosphides: recent developments and perspectives [J]. Chemical Reviews, 2013, 113(10): 7981–8065. doi: 10.1021/cr400020d
    [11] LI W, DHANDAPANI B, OYAMA S T. Molybdenum phosphide: a novel catalyst for hydrodenitrogenation [J]. Chemistry Letters, 1998, 27(3): 207–208. doi: 10.1246/cl.1998.207
    [12] OYAMA S T, GOTT T, ZHAO H, et al. Transition metal phosphide hydroprocessing catalysts: a review [J]. Catalysis Today, 2009, 143(1/2): 94–107.
    [13] ZUMBUSCH M. Über die strukturen des uransubsulfids und der subphosphide des iridiums und rhodiums [J]. Zeitschrift für Anorganische und Allgemeine Chemie, 1940, 243(4): 322–329. doi: 10.1002/zaac.19402430403
    [14] RUNDQVIST S. Phosphides of the platinum metals [J]. Nature, 1960, 185(4705): 31. doi: 10.1038/185031a0
    [15] RAUB C J, ZACHARIASEN W H, GEBALLE T H, et al. Superconductivity of some new Pt-metal compounds [J]. Journal of Physics and Chemistry of Solids, 1963, 24(9): 1093–1100. doi: 10.1016/0022-3697(63)90022-2
    [16] WANG P, WANG Y, WANG L, et al. Elastic, magnetic and electronic properties of iridium phosphide Ir2P [J]. Scientific Reports, 2016, 6(9): 21787.
    [17] SUN X W, BIOUD N, FU Z J, et al. High-pressure elastic properties of cubic Ir2P from ab initio calculations [J]. Physics Letters A, 2016, 380(43): 3672–3677. doi: 10.1016/j.physleta.2016.08.048
    [18] LIU Z J, SONG T, SUN X W, et al. Thermal expansion, heat capacity and Grüneisen parameter of iridium phosphide Ir2P from quasi-harmonic Debye model [J]. Solid State Communications, 2017, 253: 19–23. doi: 10.1016/j.ssc.2017.01.028
    [19] WANG Y, LV J, ZHU L, et al. Crystal structure prediction via particle-swarm optimization [J]. Physical Review B, 2010, 82(9): 094116. doi: 10.1103/PhysRevB.82.094116
    [20] MONKHORST H J, PACK J D. Special points for Brillouin-zone integrations [J]. Physical Review B, 1976, 13(12): 5188. doi: 10.1103/PhysRevB.13.5188
    [21] PERDEW J P, BURKE K, ERNZERHOF M. Generalized gradient approximation made simple [J]. Physical Review Letters, 1996, 77(18): 3865–3868. doi: 10.1103/PhysRevLett.77.3865
    [22] BORN M, HUANG K. Dynamical theory of crystal lattices [J]. American Journal of Physics, 1954, 39(2): 113–127.
    [23] SAVIN A, NESPER R, WENGERT S, et al. ELF: the electron localization function [J]. Angewandte Chemie International Edition in English, 1997, 36(17): 1808–1832. doi: 10.1002/(ISSN)1521-3773
  • 加载中
图(5) / 表(2)
计量
  • 文章访问数:  7368
  • HTML全文浏览量:  3194
  • PDF下载量:  56
出版历程
  • 收稿日期:  2018-10-06
  • 修回日期:  2018-11-01

目录

    /

    返回文章
    返回