Loading Characteristics and Damage Effect of Near-Surface Underwater Explosion in Harbor Basin
-
摘要: 为研究港池环境近水面水下爆炸载荷及其对码头结构的损伤特性,设计了一种典型码头结构,并构建港池环境,运用LS-DYNA程序开展水下爆炸数值模拟研究,对爆炸现象、荷载特性、结构动态响应和能量吸收特性4个方面进行了详细研究,分析了边界、比例爆距等参数的影响规律。结果表明:爆炸气泡脉动主要受到码头结构边界和水面的影响,水底和有限港池内的流体运动对其亦有一定影响;冲击波荷载以比例爆深为中心呈垂向对称分布,气泡脉动荷载主要分布于比例爆深以下位置;结构变形和毁伤主要在冲击波传播阶段形成,气泡脉动和射流的二次毁伤效果较弱;混凝土和沉箱内填土是主要能量吸收部分。Abstract: In order to study the load of underwater explosion near the surface of the harbor basin and the damage effect on the wharf, we designed a typical wharf structure and built a harbor basin environment. Then through a series of numerical analysis which was accomplished based on finite element program LS-DYNA, the explosion phenomenon, loading characteristics, structural dynamic response and energy absorption characteristics were studied in details, the influence rules and action mechanism of the boundary, scaled collapse distance and other parameters were analyzed. The results show that: the explosion bubble pulsation is mainly affected by wharf structure boundary and free surface, the bottom and the movement of fluid in the limited space also have some impacts. The shock wave load is symmetrically distributed in the vertical direction with the scaled explosion depth as the center, and the bubble pulsation load is mainly distributed below the scaled explosion depth. The structural deformation and damage are mainly formed on the propagation of shock wave, and the secondary damage effect of bubble pulsation and jet is weak. Concrete and caisson fill absorb most of the explosive energy.
-
Key words:
- underwater explosion /
- harbor basin /
- near-surface /
- damage effect /
- caisson gravity wharf
-
表 1 主要部位混凝土厚度及配筋情况
Table 1. Concrete thickness and matching bar condition of main members
Position Concrete thickness/cm Reinforcement situation Cover thickness/cm Cabin ex-wall 60 Double two way, $\varnothing$2.2 cm,@ 60 cm 20 Breast wall 60 Double two way, $\varnothing$2.2 cm,@ 60 cm 20 Partition 60 No reinforcement Cabin floor 60 No reinforcement Sealed plate 30 No reinforcement Face plate 30 No reinforcement Material $ \rho $a0/(kg·m–3) Ea/(MJ·kg–1) C0 C1 C2 C3 C4 C5 C6 Air 1.293 0.25 0 0 0 0 0.4 0.4 0 Material $ \rho $w0/(kg·m–3) C/(m·s–1) S1 S2 S3 $\gamma $0 Water 1000 1480 2.56 –1.986 1.2268 0.5 Material $\rho $e0/(kg·m–3) A/GPa B/GPa $\omega $ R1 R2 D/(m·s–1) pCJ/GPa Explosive 1654 374 3.23 0.3 4.15 0.95 6390 27 Material $ \rho $s0/(kg·m–3) Es/MPa Gs/MPa Soil 1860 22.4 8 $\rho $0/(kg·m–3) E/MPa G/MPa Yield stress/MPa Cutoff pressure/MPa Failure strain 1800 47.38 16.01 7.70 –0.70 1.2 表 4 钢筋材料参数
Table 4. Parameters of steel bar
Density/
(g·cm–3)Poisson’s
ratioInitial yield
stress/MPaElastic
modulus/GPaTangent
modulus/GPaStrain
rate/s–1Strain rate
parameterFailure
strainReinforcement
parameter7.85 0.3 335 210 1.2 40 5 0.12 0 表 5 C40混凝土HJC模型参数
Table 5. Parameters of C40 concrete used in HJC model
$ \rho $/(kg·m–3) G/GPa Fc'/MPa A B C N 2440 11.01 31.60 0.79 1.6 0.007 0.61 Smax D1 D2 EFMIN T/MPa Pcrush/MPa $ \mu $crush 7.0 0.036 1.0 0.0080 3.49 10.53 0.0013 Plock/GPa ${\mu _{{\rm{lock}}}} $ k1/GPa k2/GPa k3/GPa ${{\dot \varepsilon }_0}/{{\rm{s}}^{ - 1}}$ fs 0.80 0.11 85 –171 208 1 0.004 表 6 C45混凝土HJC模型参数
Table 6. Parameters of C45 concrete used in HJC model
$ {\rho _0}$/(kg·m-3) G/GPa Fc'/MPa A B C N 2440 11.68 35.55 0.79 1.6 0.007 0.61 Smax D1 D2 EFMIN T/MPa Pcrush/MPa $ {\mu _{\rm crush}}$ 7.0 0.037 1.0 0.0085 3.70 11.85 0.0014 Plock/GPa ${\mu _{{\rm{lock}}}} $ k1/GPa k2/GPa k3/GPa $ {{\dot \varepsilon }_0}/{{\rm{s}}^{ - 1}}$ fs 0.80 0.11 85 –171 208 1 0.004 表 7 工况设置
Table 7. Simluation conditions
Condition Explosive position W/kg R/m H/m D/m $ \overline R $/(m·kg–1/3) $\overline H $/(m·kg–1/3) $ \overline D $/(m·kg–1/3) 1 C1 100 2 3 0 0.43 0.65 0 2 C2 100 4 3 0 0.86 0.65 0 3 C3 100 6 3 0 1.29 0.65 0 4 C4 100 8 3 0 1.72 0.65 0 5 C5 100 10 3 0 2.16 0.65 0 表 8 气泡脉动规律
Table 8. Pattern of bubble impulse
Condition ${\bar R}$/(m·kg–1/3) tre/s Maximum shape Dre/m t1/s Minimum shape t2/s tb/s 1 0.43 0.24 Semi pyriform cavity 7.8 Irregular discrete bubble 0.18 2 0.86 0.34 Semi pyriform cavity 10.0 Irregularly multiconnected domain 0.42 3 1.29 0.32 Offside platy pyriform cavity 11.4 0.78 Cyclic multiconnected domain 1.50 0.58 4 1.72 0.32 Vertical symmetry pyriform cavity 12.0 0.78 Cyclic multiconnected domain 1.38 1.48 5 2.16 0.32 Vertical symmetry pyriform cavity 12.2 0.78 Cyclic multiconnected domain 1.42 2.52 表 9 码头结构各部分吸收能量
Table 9. Energy absorption of different parts of the harbor basin
$ \overline R$/(m·kg–1/3) Ec/MJ $ {\eta _{ {\rm{c} }} }$/% Ecs/MJ ${\eta _{{\rm{cs}}}} $/% Es/MJ ${\eta _{{\rm{s}}}} $/% Ets/MJ $ {\eta _{{\rm{ts}}}}$/% Esum/MJ 0.43 5.08 57.44 3.56 40.29 0.1306 1.48 0.0703 0.79 8.84 0.86 1.97 44.30 2.41 54.16 0.0069 0.15 0.0618 1.39 4.46 1.29 0.81 29.98 1.85 68.19 0.0014 0.05 0.0485 1.78 2.71 1.72 0.36 19.03 1.49 78.97 0.0003 0.01 0.0374 1.99 1.88 2.16 0.19 12.72 1.26 85.41 0.0002 0.02 0.0272 1.85 1.47 -
[1] ZAMYSHLYAYEV B V. Dynamic loads in underwater explosion: AD-757183 [R]. Suitland: Naval Intelligence Support Center, 1972. [2] SWISDAK M M. Explosion effects and properties (Part II) —explosion effects in water: AD-A056694 [R]. Sliver Spring: Naval Surface Weapons Center, 1978. [3] LI J, RONG J L. Bubble and free surface dynamics in shallow underwater explosion [J]. Ocean Engineering, 2011, 38(17/18): 1861–1868. [4] CUI P, ZHANG A M, WANG S P. Small-charge underwater explosion bubble experiments under various boundary conditions [J]. Physics of Fluids, 2016, 28(11): 1–25. [5] WANG G H, ZHANG S R, YU M, et al. Investigation of the shock wave propagation characteristics and cavitation effects of underwater explosion near boundaries [J]. Applied Ocean Research, 2014, 46(2): 40–53. [6] 张显丕, 刘建湖, 潘建强, 等. 基于效应靶的装药水下近场爆炸威力评估方法 [J]. 兵工学报, 2016, 37(8): 1430–1435. doi: 10.3969/j.issn.1000-1093.2016.08.013ZHANG X P, LIU J H, PAN J Q, et al. An evaluation method for near-field underwater explosion power based on effect target [J]. Acta Armamentarii, 2016, 37(8): 1430–1435. doi: 10.3969/j.issn.1000-1093.2016.08.013 [7] 王振雄, 顾文彬, 陈江海, 等. 浅水中爆炸水底介质对水中冲击波峰值压力影响的试验研究 [J]. 振动与冲击, 2017, 36(4): 243–248.WANG Z X, GU W B, CHEN J H, et al. Experimental study on the influence of the bottom medium on the peak pressure of explosion shock waves in shallow water [J]. Journal of Vibration and Shock, 2017, 36(4): 243–248. [8] 韦灼彬. 钢筋混凝土桩基梁板码头爆炸毁伤及抢修技术研究[D]. 天津: 天津大学, 2005. [9] 侯晓峰, 王全胜, 钱展芃, 等. 水中爆炸条件下结构毁伤评估方法研究 [J]. 防护工程, 2014, 36(1): 40–45.HOU X F, WANG Q S, QIAN Z P, et al. Study on the assessment methods of structures subjected to underwater explosion [J]. Protective Engineering, 2014, 36(1): 40–45. [10] 韦灼彬, 唐廷, 王立军. 港口水下爆炸荷载冲击特性研究 [J]. 振动与冲击, 2014, 33(6): 18–22.WEI Z B, TANG T, WANG L J. Shock characteristics of underwater explosion in port [J]. Journal of Vibration and Shock, 2014, 33(6): 18–22. [11] 董琪, 韦灼彬, 唐廷, 等. 爆炸深度对浅水爆炸气泡脉动的影响 [J]. 高压物理学报, 2018, 32(2): 024102. doi: 10.11858/gywlxb.20170580DONG Q, WEI Z B, TANG T, et al. Influence of explosion depth on bubble pulsation in shallow water explosion [J]. Chinese Journal of High Pressure Physics, 2018, 32(2): 024102. doi: 10.11858/gywlxb.20170580 [12] 董琪, 韦灼彬, 唐廷, 等. 浅水爆炸特性数值模拟研究 [J]. 海军工程大学学报, 2018, 30(3): 76–81.DONG Q, WEI Z B, TANG T, et al. Numerical simulation of characters of shallow water explosion [J]. Journal of Naval University of Engineering, 2018, 30(3): 76–81. [13] 中国水电顾问集团西北勘测设计研究院. 水工混凝土结构设计规范: DLT 5057-2009 [S]. 北京: 中国建筑工业出版社, 2015. [14] 高洪泉, 卢芳云, 赵宏伟. 不同土壤介质中爆炸的数值模拟[C]//第六届全国工程结构安全防护学术会议论文集. 洛阳, 2007: 85-90. [15] HOLMQUIST T J, JOHNSON G R. A computational constitutive model for glass subjected to large strains, high strain rates and high pressures [J]. Journal of Applied Mechanics, 2011, 78(5): 051003. doi: 10.1115/1.4004326 [16] 张凤国, 李恩征. 大应变、高应变率及高压强条件下混凝土的计算模型 [J]. 爆炸与冲击, 2002, 22(3): 198–202. doi: 10.3321/j.issn:1001-1455.2002.03.002ZHANG F G, LI E Z. A computational model for concrete subjected to large strains, high strain rates, and high pressures [J]. Explosion and Shock Waves, 2002, 22(3): 198–202. doi: 10.3321/j.issn:1001-1455.2002.03.002