混凝土薄板侵彻贯穿问题的SPH数值模拟

强洪夫 孙新亚 王广 陈福振

强洪夫, 孙新亚, 王广, 陈福振. 混凝土薄板侵彻贯穿问题的SPH数值模拟[J]. 高压物理学报, 2019, 33(2): 024101. doi: 10.11858/gywlxb.20180634
引用本文: 强洪夫, 孙新亚, 王广, 陈福振. 混凝土薄板侵彻贯穿问题的SPH数值模拟[J]. 高压物理学报, 2019, 33(2): 024101. doi: 10.11858/gywlxb.20180634
QIANG Hongfu, SUN Xinya, WANG Guang, CHEN Fuzhen. Numerical Simulation of Penetration in Concrete Sheet Based on SPH Method[J]. Chinese Journal of High Pressure Physics, 2019, 33(2): 024101. doi: 10.11858/gywlxb.20180634
Citation: QIANG Hongfu, SUN Xinya, WANG Guang, CHEN Fuzhen. Numerical Simulation of Penetration in Concrete Sheet Based on SPH Method[J]. Chinese Journal of High Pressure Physics, 2019, 33(2): 024101. doi: 10.11858/gywlxb.20180634

混凝土薄板侵彻贯穿问题的SPH数值模拟

doi: 10.11858/gywlxb.20180634
详细信息
    作者简介:

    强洪夫(1963-),男,博士,教授,博士生导师,主要从事结构强度研究. E-mail: qiang@263.net

    通讯作者:

    孙新亚(1993-),男,硕士研究生,主要从事爆炸冲击研究. E-mail: 1430167246@qq.com

  • 中图分类号: O385

Numerical Simulation of Penetration in Concrete Sheet Based on SPH Method

  • 摘要: 随着混凝土结构强度的不断提高,越来越多的防护工事选择混凝土作为主要建筑材料。在光滑粒子流体动力学方法的基础上,提出了TCK-HJC复合本构模型,对锥形弹刚性侵彻过程中混凝土薄板的变形损伤进行数值模拟,采用拟流体模型处理失效的混凝土碎片,分析了不同侵彻角(0°,60°)下锥形弹侵彻混凝土薄板的变形过程,得到了薄板的压力分布以及失效混凝土碎片的飞散角度,并与实验进行对比。结果表明,数值模拟方法是合理的,为进一步研究脆性材料的力学性能奠定了技术基础。

     

  • 图  刚性弹的运动模型

    Figure  1.  Motion model of a rigid projectile

    图  混凝土薄板失效区域划分

    Figure  2.  Failure area division of concrete target

    图  TCK-HJC本构模型计算流程图

    Figure  3.  Computation flow chart of TCK-HJC model

    图  锥形弹侵彻混凝土薄板的数值模型

    Figure  4.  Numerical model of conical projectile penetrating concrete slab

    图  锥形弹正侵彻混凝土薄板过程

    Figure  5.  Process diagram of conical projectile penetrating concrete slab

    图  数值模拟与力学模型的对比

    Figure  6.  Comparison between numerical simulation and mechanical model

    图  混凝土薄板贯穿孔洞的实验和数值模拟结果对比

    Figure  7.  Comparison of experimental results and numerical simulation of hole penetrations in concrete sheet

    图  正侵彻过程中混凝土薄板表面压力分布

    Figure  8.  Pressure distribution of concrete during positive penetration

    图  锥形弹斜侵彻混凝土薄板过程图

    Figure  9.  Process diagram of conical projectile obliquely penetrating concrete slab

    图  10  斜侵彻过程中混凝土薄板表面压力分布

    Figure  10.  Surface pressure distribution of concrete during oblique penetration

    图  11  失效混凝土碎片的飞散情况对比

    Figure  11.  SPH simulation results after conical projectile penetrating concrete slab

    表  1  混凝土的状态方程和本构方程参数

    Table  1.   Parameters of equation-of-state equation and constitutive equation of concrete

    G/GPa $ \rho $/(kg·m–3) $A$ $B $ $ N $ $ {\dot \varepsilon _0} $/s–1 $ C $ $ {f'_{\rm{c}}} $/MPa $ {S_{\max }} $
    14.8 2450 0.79 1.6 0.61 1.0 0.007 48 7.0
    pl/MPa pc/MPa $ {\varepsilon _{\rm{f}}}$ $ {\mu _{\rm{c}}}$ $ {D_1} $ $ {D_2} $ $ {\mu _{{1}}} $ T/MPa K1/GPa
    800 16.0 0.01 0.001 0.04 1.0 0.1 5 85
    K2/GPa K3/GPa $v $ $\;\beta $ K/(1026 m–3) m $ {K_{{\rm{IC}}}}$/(MPa·m1/2)
    –171 208 0.27 0.5 1.1452 6 2.758
    下载: 导出CSV
  • [1] HOLMQUIST T J, TEMPLETON D W, BISHNOI K D. Constitutive modeling of aluminum nitride for large strain, high-strain rate, and high-pressure applications [J]. International Journal of Impact Engineering, 2001, 25(3): 211–231. doi: 10.1016/S0734-743X(00)00046-4
    [2] 孙炜海, 鞠桂玲, 杨班权. 平头弹丸侵彻B4C陶瓷/金属复合靶板的数值模拟 [J]. 装甲兵工程学院学报, 2014, 28(2): 45–48

    SUN W H, JU G L, YANG B Q. Numerical simulation on penetration of B4C ceramic/metal composite targets struck by flat-ended projectiles [J]. Journal of Academy of Armored Force Engineering, 2014, 28(2): 45–48
    [3] BACKMAN M E, GOLDSMITH W. The mechanics of penetration of projectiles into targets [J]. International Journal of Engineering Science, 1978, 16(1): 1–99. doi: 10.1016/0020-7225(78)90002-2
    [4] 钱伟长. 穿甲力学 [M].北京: 高等教育出版社, 1984.

    QIAN W C. Penetration mechanics [M]. Beijing: High Education Press, 1984.
    [5] CORBETT G G, REID S R, JOHNSON W. Impact loading of plates and shells by free-flying projectiles: a review [J]. International Journal of Impact Engineering, 1996, 18(2): 141–230. doi: 10.1016/0734-743X(95)00023-4
    [6] FORRESTAL M J, FREW D J, HANCHAK S J, et al. Penetration of grout and concrete targets with ogive-nose steel projectiles [J]. International Journal of Impact Engineering, 1996, 18(5): 465–476. doi: 10.1016/0734-743X(95)00048-F
    [7] LI Q M, REID S R, WEN H M, et al. Local impact effects of hard missiles on concrete targets [J]. International Journal of impact engineering, 2005, 32(1): 224–284. doi: 10.1016/j.ijimpeng.2005.04.005
    [8] 陈小伟. 穿甲/侵彻问题的若干工程研究进展 [J]. 力学进展, 2009, 39(3): 316–351 doi: 10.3321/j.issn:1000-0992.2009.03.006

    CHEN X W. Advances in the penetration/perforation of rigid projectiles [J]. Advances in Mechanics, 2009, 39(3): 316–351 doi: 10.3321/j.issn:1000-0992.2009.03.006
    [9] LI Q M, CHEN X W. Dimensionless formulae for penetration depth of concrete target impacted by a non-deformable projectile [J]. International Journal of Impact Engineering, 2003, 28(1): 93–116. doi: 10.1016/S0734-743X(02)00037-4
    [10] GEBBEKEN N, GREULICH S, PIETZSCH A. Hugoniot properties for concrete determined by full-scale detonation experiments and flyer-plate-impact tests [J]. International Journal of Impact Engineering, 2006, 32(12): 2017–2031. doi: 10.1016/j.ijimpeng.2005.08.003
    [11] 梁斌. 动能攻坚战斗部对混凝土靶侵爆效应研究 [D].绵阳:中国工程物理研究院, 2009.

    LIANG B. Research on invading explosion effect of concrete target by kinetic energy [D]. Mianyang: China Academy of Engineering Physics, 2009.
    [12] 黄民荣.刚性弹体对混凝土靶的侵彻与贯穿机理研究 [D].南京:南京理工大学, 2011.

    HUANG M R. Penetration and perforation mechanism of rigid projectile into the concrete target [D]. Nanjing: Nanjing University of Science & Technology, 2011.
    [13] 邓佳杰, 张先锋, 葛贤坤, 等. 基于局部相互作用理论的侵彻弹头部形状优化及仿真 [J]. 爆炸与冲击, 2017, 37(4): 611–620 doi: 10.11883/1001-1455(2017)04-0611-10

    DENG J F, ZHANG X F, GE X K, et al. Nose-shape optimization and simulation of projectiles penetrating into concrete target based on local interaction theory [J]. Explosion and Shock Waves, 2017, 37(4): 611–620 doi: 10.11883/1001-1455(2017)04-0611-10
    [14] FORRESTAL M J, FREW D J, HICKERSON J P, et al. Penetration of concrete targets with deceleration-time measurements [J]. International Journal of Impact Engineering, 2003, 28(5): 479–497. doi: 10.1016/S0734-743X(02)00108-2
    [15] 王成, 王万军, 宁建国. 聚能装药对混凝土靶板的侵彻研究 [J]. 力学学报, 2015, 47(4): 672–684

    WANG C, WANG W J, NING J G. Investigation on shaped charge penetrating into concrete targets [J]. Chinese Journal of Theoretical and Applied Mechanics, 2015, 47(4): 672–684
    [16] 薛建锋, 沈培辉, 王晓鸣. 弹体斜侵彻混凝土靶的实验研究及其数值模拟 [J]. 爆炸与冲击, 2017, 37(3): 536–543 doi: 10.11883/1001-1455(2017)03-0536-08

    XUE J F, SHEN P H, WANG X M. Experimental study and numerical simulation of projectile obliquely penetrating into concrete target [J]. Explosion and Shock Waves, 2017, 37(3): 536–543 doi: 10.11883/1001-1455(2017)03-0536-08
    [17] KONG X Z, WU H, FANG Q, et al. Projectile penetration into mortar targets with a broad range of steiking velocities: test and analyses [J]. International of Journal of Impact Engineering, 2017, 106: 18–29. doi: 10.1016/j.ijimpeng.2017.02.022
    [18] GUPTA N K, AITMAN B S, CARGILE J D, et al. Normalimpact of ogive nosed projectiles on thin plates [J]. International of Journal of Impact Engineering, 2001, 25(7): 641–660. doi: 10.1016/S0734-743X(01)00003-3
    [19] WARREN T L, FOSSUM A F, FREW D J. Penetration into low-strength (23 MPa) concrete: target characterization andsimulations [J]. International of Journal of Impact Engineering, 2004, 30(5): 477–503. doi: 10.1016/S0734-743X(03)00092-7
    [20] 董军, 邓国强, 杨科之, 等. 弹丸对混凝土薄板的冲击破坏效应 [J]. 岩石力学与工程学报, 2005, 24(4): 713–720 doi: 10.3321/j.issn:1000-6915.2005.04.029

    DONG J, DENG G Q, YANG K Z, et al. Damage effect of thin concrete slabs subjected to projectile impact [J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(4): 713–720 doi: 10.3321/j.issn:1000-6915.2005.04.029
    [21] 强洪夫, 范树佳, 陈福振, 等. 基于SPH 方法的聚能射流侵彻混凝土靶板数值模拟 [J]. 爆炸与冲击, 2016, 36(4): 516–524 doi: 10.11883/1001-1455(2016)04-0516-09

    QIANG H F, FAN S J, CHEN F Z, et al. Numerical simulation on penetration of concrete target by shaped charge jet with SPH method [J]. Explosion and Shock Waves, 2016, 36(4): 516–524 doi: 10.11883/1001-1455(2016)04-0516-09
    [22] 张馨予, 吴艳青, 黄风雷. PBX装药弹体侵彻混凝土薄板的数值模拟 [J]. 含能材料, 2018, 26(1): 101–108

    ZHANG X Y, WU Y Q, HUANG F L. Numerical simulation on the dynamic damage of PBX charges filled in projectiles during penetrating thin concrete targets [J]. Chinese Journal of Energetic Materials, 2018, 26(1): 101–108
    [23] 武海军, 黄风雷, 付跃升, 等. 钢筋混凝土中爆炸破坏效应数值模拟分析 [J]. 北京理工大学学报, 2007, 27(3): 200–204 doi: 10.3969/j.issn.1001-0645.2007.03.004

    WU H J, HUANG F L, FU Y S, et al. Numerical simulation of reinforced concrete breakage under internal blast loading [J]. Transactions of Beijing Institute of Technology, 2007, 27(3): 200–204 doi: 10.3969/j.issn.1001-0645.2007.03.004
    [24] SWEGLE J W, ATTAWAY S W. On the feasibility of using smoothed particle hydrodynamics for underwater explosion calculations [J]. Computational Mechanics, 1995, 17(3): 151–168. doi: 10.1007/BF00364078
    [25] LIBERSKY L D, PETSCHEK A G, CARNEY T C, et al. High strain Lagrangian hydrodynamics: a three-dimensional SPH code for dynamic material response [J]. Journal of Computational Physics, 1993, 109(1): 67–75. doi: 10.1006/jcph.1993.1199
    [26] MONAGHAN J J. Smoothed particle hydrodynamics [J]. Annual Review of Astronomy and Astrophysics, 1992, 30(1): 543–574. doi: 10.1146/annurev.aa.30.090192.002551
    [27] JOHNSON G R, COOK W. A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures [C]// Proceedings of the Seventh International Symposium on Ballistics. The Hague, 1983: 541–547.
    [28] QIANG H, WANG K, GAO W. Numerical simulation of shaped charge jet using multi-phase SPH method [J]. Transactions of Tianjin University, 2008, 14(1): 495–499.
    [29] 强洪夫, 孙新亚, 陈福振, 等. 钻地弹侵爆多层混凝土建筑物的SPH 数值模拟 [J/OL]. 爆炸与冲击(2018–06–02) [2018–09–14].http://kns.cnki.net/kcms/detail/51.1148.O3.20180531.1019.034.html.

    QIANG H F, SUN X Y, CHEN F Z, et al. Numerical simulation of earth penetrating weapon penetration and explosion multi-layer concrete structures with SPH method [J]. Explosion and Shock Waves (2018–06–02) [2018–09–14]. http://kns.cnki.net/kcms/detail/51.1148.O3.20180531.1019.034.html.
    [30] 陈福振, 强洪夫, 高巍然. 气粒两相流传热问题的光滑离散颗粒流体动力学方法数值模拟 [J]. 物理学报, 2014, 63(23): 230206 doi: 10.7498/aps.63.230206

    CHEN F Z, QIANG H F, GAO W R. Numerical simulation of heat transfer in gas-particle two-phase flow with smoothed discrete particle hydro dynamics [J]. Acta Physica Sinica, 2014, 63(23): 230206 doi: 10.7498/aps.63.230206
    [31] 强洪夫, 高巍然. 完全变光滑长度SPH法及其实现 [J]. 计算物理, 2008, 25(5): 569–575 doi: 10.3969/j.issn.1001-246X.2008.05.008

    QIANG H F, GAO W R. SPH method with fully variable smoothing lengths and implementation [J]. Chinese Journal of Computational Physics, 2008, 25(5): 569–575 doi: 10.3969/j.issn.1001-246X.2008.05.008
    [32] 强洪夫.光滑例子流体动力学方法及应用 [M]. 北京: 科学出版社, 2017: 246–287.
    [33] 金乾坤. 混凝土动态损伤与失效模型 [J]. 兵工学报, 2006, 27(1): 10–14 doi: 10.3321/j.issn:1000-1093.2006.01.003

    JIN Q K. Dynamic damage and failure model for concrete materials [J]. Acta Armamentarii, 2006, 27(1): 10–14 doi: 10.3321/j.issn:1000-1093.2006.01.003
  • 加载中
图(11) / 表(1)
计量
  • 文章访问数:  9935
  • HTML全文浏览量:  4259
  • PDF下载量:  56
出版历程
  • 收稿日期:  2018-09-14
  • 修回日期:  2018-09-24

目录

    /

    返回文章
    返回