不同硬度钢质破片侵彻Q235A钢板试验研究

杜宁 张先锋 熊玮 丁力 王季鹏 刘闯

杜宁, 张先锋, 熊玮, 丁力, 王季鹏, 刘闯. 不同硬度钢质破片侵彻Q235A钢板试验研究[J]. 高压物理学报, 2019, 33(5): 055102. doi: 10.11858/gywlxb.20180631
引用本文: 杜宁, 张先锋, 熊玮, 丁力, 王季鹏, 刘闯. 不同硬度钢质破片侵彻Q235A钢板试验研究[J]. 高压物理学报, 2019, 33(5): 055102. doi: 10.11858/gywlxb.20180631
DU Ning, ZHANG Xianfeng, XIONG Wei, DING Li, WANG Jipeng, LIU Chuang. Experimental Study on the Penetration of Steel Fragments with Different Hardness into Q235A Steel Plate[J]. Chinese Journal of High Pressure Physics, 2019, 33(5): 055102. doi: 10.11858/gywlxb.20180631
Citation: DU Ning, ZHANG Xianfeng, XIONG Wei, DING Li, WANG Jipeng, LIU Chuang. Experimental Study on the Penetration of Steel Fragments with Different Hardness into Q235A Steel Plate[J]. Chinese Journal of High Pressure Physics, 2019, 33(5): 055102. doi: 10.11858/gywlxb.20180631

不同硬度钢质破片侵彻Q235A钢板试验研究

doi: 10.11858/gywlxb.20180631
基金项目: 国家自然科学基金(11772159);高性能陶瓷和超微结构国家重点实验室开放基金(SKL201602SIC)
详细信息
    作者简介:

    杜 宁(1990-),男,博士研究生,主要从事高效毁伤与其防护技术. E-mail:duning521519@126.com

    通讯作者:

    张先锋(1978-),男,博士,教授,主要从事高效毁伤与防护技术. E-mail:lynx@njust.edu.cn

  • 中图分类号: O385

Experimental Study on the Penetration of Steel Fragments with Different Hardness into Q235A Steel Plate

  • 摘要: 为研究不同硬度钢质破片的静动态力学性能及侵彻能力,通过准静态及动态力学性能试验确定了不同硬度D60钢的力学性能参数。采用弹道枪发射破片并撞击钢板的试验方法,获得了不同着速破片对有限厚Q235A钢板的侵彻过程参数,分析了材料力学性能与破坏模式的相关性。结合量纲分析法,得到不同硬度钢质破片侵彻Q235A钢板的弹道极限速度经验关系式。结果表明:破片的质量损失程度随着破片硬度的增加而降低,剩余破片的长度随着硬度的增加而减少,破片的侵彻能力随着硬度的增加而增加,HRC36破片贯穿钢板后剩余速度相对HRC20破片大幅度提高。所确定的弹道极限速度经验关系式预测值与试验结果吻合较好。

     

  • 图  3种不同硬度D60钢的静态拉伸和压缩测试曲线

    Figure  1.  Quasi-static tensile and compression test curves for three different hardness of D60 steel

    图  3种不同硬度D60钢的动态压缩测试曲线

    Figure  2.  Dynamic compression test curves of D60 steel with different hardness

    图  分离式霍普金森压杆测试前后的试样对比

    Figure  3.  Photographs of specimens before and after split Hopkinson pressure bar test

    图  破片侵彻试验布局图

    Figure  4.  Layout of fragment penetration test

    图  HRC20破片侵彻Q235A钢板后典型破坏形貌

    Figure  5.  Typical failure morphology of Q235A steel plate after penetration by fragments with HRC20

    图  HRC32破片侵彻Q235A钢板后典型破坏形貌

    Figure  6.  Typical failure morphology of Q235A steel plate after penetration by fragments with HRC32

    图  HRC36破片侵彻Q235A钢板后典型破坏形貌

    Figure  7.  Typical failure morphology of Q235A steel plate after penetration by fragments with HRC36

    图  不同硬度破片破坏示意图

    Figure  8.  Schematic diagram of fracture failure of fragments

    图  破片剩余长度与破片硬度关系

    Figure  9.  Relationship between residual length and hardness of fragments

    图  10  破片着靶速度与剩余速度的关系

    Figure  10.  Relationship between residual velocity and initial velocity

    图  11  破片着靶速度与开坑直径关系

    Figure  11.  Relationship between the diameter of the crater and the initial velocity

    表  1  D60钢材料硬度测试结果

    Table  1.   Hardness measurement result of D60

    MaterialHardness/HRCAverage hardness/HRC
    Test 1Test 2Test 3
    D6019.5212020
    31 333132
    37 363536
    下载: 导出CSV

    表  2  D60钢与Q235钢的主要化学组成

    Table  2.   Main chemical compositions of D60 and Q235 steel

    MaterialCMnSiPSCrNiCu
    D600.57–0.650.5–0.80.17–0.4≤0.04≤0.04≤0.3≤0.3≤0.2
    Q2350.14–0.220.3–0.65≤0.3≤0.045≤0.05
    下载: 导出CSV

    表  3  3种不同硬度D60钢的力学性能

    Table  3.   Mechanical properties of three different hardness of D60 steel

    MaterialHRCQuasi-static tensile and compressionDynamic compression
    ${\sigma _{\rm{p}}}$/MPa${\sigma_{\rm{pb}}}$/MPaE/GPa$\delta $/%${\sigma _{\rm{sc}}}$/MPa${\sigma _{\rm{sd}}}$/MPa
    D602034384767.718.64141024 (5610–6061 s–1)
    3266499768.311.87231198 (4500–6040 s–1)
    36831107073.811.08641263 (5350–5960 s–1)
    Quasi-static notched tensile and quasi-static tensile
    MaterialHRCStress triaxiality ${\eta _0}$Maximum equivalent failure plastic strain ${\varepsilon _{\rm{f}}}$
    R=3 mmR=6 mmR=9 mmR=3 mmR=6 mmR=9 mmQuasi-static tensile
    D60200.66830.75540.86280.84420.62350.53271.2655
    320.54480.70370.70630.84720.62170.53491.0628
    360.38820.41380.45580.84470.62230.53400.7804
    下载: 导出CSV

    表  4  3种不同硬度破片侵彻Q235A钢板的试验结果

    Table  4.   Test results of fragments with three different hardness penetrating into Q235A steel plate

    Hardnessd/mmm/gv0/(m·s–1)Penetrativityvr/(m·s–1)v50/(m·s–1)ISEA/(J·m2·kg–1)
    HRC209.926.11 988.3Blind hole0108946.57
    6.101089.2Throughout24.6
    6.111230.0Throughout168
    6.101270.7Throughout221
    6.101286.6Throughout223.5
    6.101319.0Throughout280
    6.101414.6Throughout379
    HRC329.926.10 892.5Blind hole0108642.72
    6.10 963.1Blind hole0
    6.101086.2Throughout66
    6.101252.0Throughout261
    6.101296.0Throughout295
    6.111335.0Throughout353
    6.111368.0Throughout382
    6.111376.0Throughout389
    HRC369.926.10 892.5Blind hole0 98738.25
    6.09 987.1Throughout19.6
    6.091048.8Throughout77.6
    6.111240.5Throughout309.6
    6.091285.0Throughout399.5
    6.091346.1Throughout424
    6.101376.6Throughout440.9
    下载: 导出CSV

    表  5  弹道极限速度试验值与计算值对比[7]

    Table  5.   Comparison between test results and calculated results of ballistic limit velocity[7]

    Fragmented materiald0/mmTarget materialhb/mmBallistic limit velocity v50/(m·s–1)Error/%
    Test[8]Calculated
    35CrMnSiA11.2AS steel15.010701083.271.2
    12.8AS steel15.010841085.550.1
    12.8SS steel14.510181050.000.2
    11.2Q235A steel15.9 917 929.821.3
    下载: 导出CSV
  • [1] 金山, 汤铁钢, 孙学林, 等. 不同热处理条件下45钢柱壳的动态性能 [J]. 爆炸与冲击, 2006, 26(5): 423–428. doi: 10.3321/j.issn:1001-1455.2006.05.006

    JIN S, TANG T G, SUN X L, et al. Dynamic characteristics of 45 steel cylinder shell by different heat treatment conditions [J]. Explosion and Shock Waves, 2006, 26(5): 423–428. doi: 10.3321/j.issn:1001-1455.2006.05.006
    [2] DEMIR T, ÜBEYLI M, YILDIRIM R O. Effect of hardness on the ballistic impact behavior of high-strength steels against 7.62-mm armor piercing projectiles [J]. Journal of Materials Engineering and Performance, 2009, 18(2): 145–153. doi: 10.1007/s11665-008-9288-3
    [3] DIKSHIT S N, KUTUMBARAO V V, SUNDARARAJAN G. The influence of plate hardness on the ballistic penetration of thick steel plates [J]. International Journal of Impact Engineering, 1995, 16(2): 293–320. doi: 10.1016/0734-743X(94)00041-T
    [4] 吴广, 冯顺山, 董永香, 等. 不同硬度弹丸对中厚钢板作用的试验研究 [J]. 兵工学报, 2010, 31(1): 260–263.

    WU G, FENG S S, DONG Y X, et al. Experimental study on penetration effects of projectiles with different hardnesses on target [J]. Acta Armamentarii, 2010, 31(1): 260–263.
    [5] 陈小伟, 张方举, 梁斌, 等. A3钢钝头弹侵彻45钢板破坏模式的试验研究 [J]. 爆炸与冲击, 2006, 26(3): 199–207. doi: 10.3321/j.issn:1001-1455.2006.03.002

    CHEN X W, ZHANG F J, LIANG B, et al. Three modes of penetration mechanics of A3 steel cylindrical projectiles impact onto 45 steel plates [J]. Explosion and Shock Waves, 2006, 26(3): 199–207. doi: 10.3321/j.issn:1001-1455.2006.03.002
    [6] 徐豫新, 任杰, 王树山. 钨球正侵彻下低碳钢板的极限贯穿厚度研究 [J]. 北京理工大学学报, 2017, 37(6): 551–556.

    XU Y X, REN J, WANG S S. Research on perforation limit thickness of low carbon steel plates impacted normally by tungsten spheres [J]. Transaction of Beijing Institute of Technology, 2017, 37(6): 551–556.
    [7] 任杰, 徐豫新, 王树山. 超高强度平头圆柱形弹体对低碳合金钢板的高速撞击实验 [J]. 爆炸与冲击, 2017, 37(4): 629–636. doi: 10.11883/1001-1455(2017)04-0629-08

    REN J, XU Y X, WANG S S. High velocity impact of low-carbon alloy steel plates by ultra-high strength blunt projectiles [J]. Explosion and Shock Waves, 2017, 37(4): 629–636. doi: 10.11883/1001-1455(2017)04-0629-08
    [8] 赵丽俊, 焦志刚, 李晓婕, 等. 预制破片侵彻均质装甲钢的极限穿透速度 [J]. 爆炸与冲击, 2018, 38(1): 183–190. doi: 10.11883/bzycj-2016-0116

    ZHAO L J, JIAO Z G, LI X J, et al. Critical penetration velocity of prefabricated fragment in penetrating homogeneous armor steel plate [J]. Explosion and Shock Waves, 2018, 38(1): 183–190. doi: 10.11883/bzycj-2016-0116
    [9] 周楠, 王金相, 张亚宁, 等. 球形破片侵彻下钢/铝复合钢板的失效模式与吸能机理 [J]. 爆炸与冲击, 2018, 38(1): 66–75. doi: 10.11883/bzycj-2016-0131

    ZHOU N, WANG J X, ZHANG Y N, et al. Failure mode and energy absorption mechanism of steel/aluminum composite plates impacted by spherical fragment [J]. Explosion and Shock Waves, 2018, 38(1): 66–75. doi: 10.11883/bzycj-2016-0131
    [10] BACKMAN M E, GOLDSMITH W. The mechanics of penetration of projectiles into targets [J]. International Journal of Engineering Science, 1978, 16(1): 1–99. doi: 10.1016/0020-7225(78)90002-2
    [11] 陈继恩. 基于应力三轴度的材料失效研究 [D]. 武汉: 华中科技大学, 2009: 23–34.

    CHEN J E. Research of material failure basic on stress triaxiality [D]. Wuhan: Huazhong University of Science and Technology of China, 2009: 23–34.
    [12] 谈庆明. 量纲分析 [M]. 合肥: 中国科学技术大学出版社, 2005: 9–18.

    TAN Q M. Dimensional analysis [M]. Hefei: University of Science and Technology of China Press, 2005: 9–18.
    [13] 毛亮, 王华, 姜春兰, 等. 钨合金球形破片侵彻陶瓷/DFRP复合靶的弹道极限速度 [J]. 振动与冲击, 2015, 34(13): 1–5.

    MAO L, WANG H, JIANG C L, et al. Ballistic limit velocity of tungsten alloy spherical fragment penetrating ceramic/DFRP composite target plates [J]. Journal of Vibration and Shock, 2015, 34(13): 1–5.
    [14] BANERJEE B. The mechanical threshold stress model for various tempers of AISI 4340 steel [J]. International Journal of Solids and Structures, 2005, 44(3): 834–859.
  • 加载中
图(11) / 表(5)
计量
  • 文章访问数:  7703
  • HTML全文浏览量:  3738
  • PDF下载量:  40
出版历程
  • 收稿日期:  2018-09-10
  • 修回日期:  2019-01-09

目录

    /

    返回文章
    返回