Experimental Study on the Penetration of Steel Fragments with Different Hardness into Q235A Steel Plate
-
摘要: 为研究不同硬度钢质破片的静动态力学性能及侵彻能力,通过准静态及动态力学性能试验确定了不同硬度D60钢的力学性能参数。采用弹道枪发射破片并撞击钢板的试验方法,获得了不同着速破片对有限厚Q235A钢板的侵彻过程参数,分析了材料力学性能与破坏模式的相关性。结合量纲分析法,得到不同硬度钢质破片侵彻Q235A钢板的弹道极限速度经验关系式。结果表明:破片的质量损失程度随着破片硬度的增加而降低,剩余破片的长度随着硬度的增加而减少,破片的侵彻能力随着硬度的增加而增加,HRC36破片贯穿钢板后剩余速度相对HRC20破片大幅度提高。所确定的弹道极限速度经验关系式预测值与试验结果吻合较好。Abstract: Quasi-static tensile/compression and SHPB (split Hopkinson pressure bar) compression tests were conducted in order to study the mechanical properties of steel fragments with different hardness. Furthermore, the fragments were launched by a ballistic gun at different velocities into a Q235A steel plate with finite thickness. The correlation between the mechanical properties and the failure mode of fragments was analyzed based on the ballistic test results. Combined with the dimensional analysis method, the empirical relationship of the ballistic limit velocity of the steel fragments with different hardness penetrating into the Q235A steel plate was obtained. The results show that the mass loss of the fragments decreases with the increase of the hardness of the fragments, while the residual length of the fragments decreases with the increase of the hardness. The penetration ability of fragments increases with the increase of the hardness. The residual velocity of the fragments with HRC36 was relatively higher than that with HRC20 after penetration. The predicted values of the determined empirical relationships agree well with the experimental results.
-
Key words:
- impact dynamics /
- low carbon steel /
- hardness /
- ballistic limit velocity
-
表 1 D60钢材料硬度测试结果
Table 1. Hardness measurement result of D60
Material Hardness/HRC Average hardness/HRC Test 1 Test 2 Test 3 D60 19.5 21 20 20 31 33 31 32 37 36 35 36 表 2 D60钢与Q235钢的主要化学组成
Table 2. Main chemical compositions of D60 and Q235 steel
Material C Mn Si P S Cr Ni Cu D60 0.57–0.65 0.5–0.8 0.17–0.4 ≤0.04 ≤0.04 ≤0.3 ≤0.3 ≤0.2 Q235 0.14–0.22 0.3–0.65 ≤0.3 ≤0.045 ≤0.05 表 3 3种不同硬度D60钢的力学性能
Table 3. Mechanical properties of three different hardness of D60 steel
Material HRC Quasi-static tensile and compression Dynamic compression ${\sigma _{\rm{p}}}$/MPa ${\sigma_{\rm{pb}}}$/MPa E/GPa $\delta $/% ${\sigma _{\rm{sc}}}$/MPa ${\sigma _{\rm{sd}}}$/MPa D60 20 343 847 67.7 18.6 414 1024 (5610–6061 s–1) 32 664 997 68.3 11.8 723 1198 (4500–6040 s–1) 36 831 1070 73.8 11.0 864 1263 (5350–5960 s–1) Quasi-static notched tensile and quasi-static tensile Material HRC Stress triaxiality ${\eta _0}$ Maximum equivalent failure plastic strain ${\varepsilon _{\rm{f}}}$ R=3 mm R=6 mm R=9 mm R=3 mm R=6 mm R=9 mm Quasi-static tensile D60 20 0.6683 0.7554 0.8628 0.8442 0.6235 0.5327 1.2655 32 0.5448 0.7037 0.7063 0.8472 0.6217 0.5349 1.0628 36 0.3882 0.4138 0.4558 0.8447 0.6223 0.5340 0.7804 表 4 3种不同硬度破片侵彻Q235A钢板的试验结果
Table 4. Test results of fragments with three different hardness penetrating into Q235A steel plate
Hardness d/mm m/g v0/(m·s–1) Penetrativity vr/(m·s–1) v50/(m·s–1) ISEA/(J·m2·kg–1) HRC20 9.92 6.11 988.3 Blind hole 0 1089 46.57 6.10 1089.2 Throughout 24.6 6.11 1230.0 Throughout 168 6.10 1270.7 Throughout 221 6.10 1286.6 Throughout 223.5 6.10 1319.0 Throughout 280 6.10 1414.6 Throughout 379 HRC32 9.92 6.10 892.5 Blind hole 0 1086 42.72 6.10 963.1 Blind hole 0 6.10 1086.2 Throughout 66 6.10 1252.0 Throughout 261 6.10 1296.0 Throughout 295 6.11 1335.0 Throughout 353 6.11 1368.0 Throughout 382 6.11 1376.0 Throughout 389 HRC36 9.92 6.10 892.5 Blind hole 0 987 38.25 6.09 987.1 Throughout 19.6 6.09 1048.8 Throughout 77.6 6.11 1240.5 Throughout 309.6 6.09 1285.0 Throughout 399.5 6.09 1346.1 Throughout 424 6.10 1376.6 Throughout 440.9 表 5 弹道极限速度试验值与计算值对比[7]
Table 5. Comparison between test results and calculated results of ballistic limit velocity[7]
Fragmented material d0/mm Target material hb/mm Ballistic limit velocity v50/(m·s–1) Error/% Test[8] Calculated 35CrMnSiA 11.2 AS steel 15.0 1070 1083.27 1.2 12.8 AS steel 15.0 1084 1085.55 0.1 12.8 SS steel 14.5 1018 1050.00 0.2 11.2 Q235A steel 15.9 917 929.82 1.3 -
[1] 金山, 汤铁钢, 孙学林, 等. 不同热处理条件下45钢柱壳的动态性能 [J]. 爆炸与冲击, 2006, 26(5): 423–428. doi: 10.3321/j.issn:1001-1455.2006.05.006JIN S, TANG T G, SUN X L, et al. Dynamic characteristics of 45 steel cylinder shell by different heat treatment conditions [J]. Explosion and Shock Waves, 2006, 26(5): 423–428. doi: 10.3321/j.issn:1001-1455.2006.05.006 [2] DEMIR T, ÜBEYLI M, YILDIRIM R O. Effect of hardness on the ballistic impact behavior of high-strength steels against 7.62-mm armor piercing projectiles [J]. Journal of Materials Engineering and Performance, 2009, 18(2): 145–153. doi: 10.1007/s11665-008-9288-3 [3] DIKSHIT S N, KUTUMBARAO V V, SUNDARARAJAN G. The influence of plate hardness on the ballistic penetration of thick steel plates [J]. International Journal of Impact Engineering, 1995, 16(2): 293–320. doi: 10.1016/0734-743X(94)00041-T [4] 吴广, 冯顺山, 董永香, 等. 不同硬度弹丸对中厚钢板作用的试验研究 [J]. 兵工学报, 2010, 31(1): 260–263.WU G, FENG S S, DONG Y X, et al. Experimental study on penetration effects of projectiles with different hardnesses on target [J]. Acta Armamentarii, 2010, 31(1): 260–263. [5] 陈小伟, 张方举, 梁斌, 等. A3钢钝头弹侵彻45钢板破坏模式的试验研究 [J]. 爆炸与冲击, 2006, 26(3): 199–207. doi: 10.3321/j.issn:1001-1455.2006.03.002CHEN X W, ZHANG F J, LIANG B, et al. Three modes of penetration mechanics of A3 steel cylindrical projectiles impact onto 45 steel plates [J]. Explosion and Shock Waves, 2006, 26(3): 199–207. doi: 10.3321/j.issn:1001-1455.2006.03.002 [6] 徐豫新, 任杰, 王树山. 钨球正侵彻下低碳钢板的极限贯穿厚度研究 [J]. 北京理工大学学报, 2017, 37(6): 551–556.XU Y X, REN J, WANG S S. Research on perforation limit thickness of low carbon steel plates impacted normally by tungsten spheres [J]. Transaction of Beijing Institute of Technology, 2017, 37(6): 551–556. [7] 任杰, 徐豫新, 王树山. 超高强度平头圆柱形弹体对低碳合金钢板的高速撞击实验 [J]. 爆炸与冲击, 2017, 37(4): 629–636. doi: 10.11883/1001-1455(2017)04-0629-08REN J, XU Y X, WANG S S. High velocity impact of low-carbon alloy steel plates by ultra-high strength blunt projectiles [J]. Explosion and Shock Waves, 2017, 37(4): 629–636. doi: 10.11883/1001-1455(2017)04-0629-08 [8] 赵丽俊, 焦志刚, 李晓婕, 等. 预制破片侵彻均质装甲钢的极限穿透速度 [J]. 爆炸与冲击, 2018, 38(1): 183–190. doi: 10.11883/bzycj-2016-0116ZHAO L J, JIAO Z G, LI X J, et al. Critical penetration velocity of prefabricated fragment in penetrating homogeneous armor steel plate [J]. Explosion and Shock Waves, 2018, 38(1): 183–190. doi: 10.11883/bzycj-2016-0116 [9] 周楠, 王金相, 张亚宁, 等. 球形破片侵彻下钢/铝复合钢板的失效模式与吸能机理 [J]. 爆炸与冲击, 2018, 38(1): 66–75. doi: 10.11883/bzycj-2016-0131ZHOU N, WANG J X, ZHANG Y N, et al. Failure mode and energy absorption mechanism of steel/aluminum composite plates impacted by spherical fragment [J]. Explosion and Shock Waves, 2018, 38(1): 66–75. doi: 10.11883/bzycj-2016-0131 [10] BACKMAN M E, GOLDSMITH W. The mechanics of penetration of projectiles into targets [J]. International Journal of Engineering Science, 1978, 16(1): 1–99. doi: 10.1016/0020-7225(78)90002-2 [11] 陈继恩. 基于应力三轴度的材料失效研究 [D]. 武汉: 华中科技大学, 2009: 23–34.CHEN J E. Research of material failure basic on stress triaxiality [D]. Wuhan: Huazhong University of Science and Technology of China, 2009: 23–34. [12] 谈庆明. 量纲分析 [M]. 合肥: 中国科学技术大学出版社, 2005: 9–18.TAN Q M. Dimensional analysis [M]. Hefei: University of Science and Technology of China Press, 2005: 9–18. [13] 毛亮, 王华, 姜春兰, 等. 钨合金球形破片侵彻陶瓷/DFRP复合靶的弹道极限速度 [J]. 振动与冲击, 2015, 34(13): 1–5.MAO L, WANG H, JIANG C L, et al. Ballistic limit velocity of tungsten alloy spherical fragment penetrating ceramic/DFRP composite target plates [J]. Journal of Vibration and Shock, 2015, 34(13): 1–5. [14] BANERJEE B. The mechanical threshold stress model for various tempers of AISI 4340 steel [J]. International Journal of Solids and Structures, 2005, 44(3): 834–859.