SPH方法在宽速域岩石侵彻问题中的应用

强洪夫 张国星 王广 黄拳章

强洪夫, 张国星, 王广, 黄拳章. SPH方法在宽速域岩石侵彻问题中的应用[J]. 高压物理学报, 2019, 33(5): 055105. doi: 10.11858/gywlxb.20180621
引用本文: 强洪夫, 张国星, 王广, 黄拳章. SPH方法在宽速域岩石侵彻问题中的应用[J]. 高压物理学报, 2019, 33(5): 055105. doi: 10.11858/gywlxb.20180621
QIANG Hongfu, ZHANG Guoxing, WANG Guang, HUANG Quanzhang. Application of SPH Method for Problem of Rock Penetration within the Wide-Ranged Velocity[J]. Chinese Journal of High Pressure Physics, 2019, 33(5): 055105. doi: 10.11858/gywlxb.20180621
Citation: QIANG Hongfu, ZHANG Guoxing, WANG Guang, HUANG Quanzhang. Application of SPH Method for Problem of Rock Penetration within the Wide-Ranged Velocity[J]. Chinese Journal of High Pressure Physics, 2019, 33(5): 055105. doi: 10.11858/gywlxb.20180621

SPH方法在宽速域岩石侵彻问题中的应用

doi: 10.11858/gywlxb.20180621
基金项目: 国家自然科学基金(51276192)
详细信息
    作者简介:

    强洪夫(1963-),男,博士,教授,博士生导师,主要从事材料与结构失效行为与高性能数值模拟研究. E-mail:qiang@263.net

    通讯作者:

    张国星(1994-),男,硕士研究生,主要从事计算力学研究. E-mail:1428071753@qq.com

  • 中图分类号: O313.4

Application of SPH Method for Problem of Rock Penetration within the Wide-Ranged Velocity

  • 摘要: 采用光滑粒子流体动力学(SPH)方法对花岗岩靶板受碰撞侵彻的大应变、高应变率变形问题进行了数值模拟。为了描述弹目材料的非线性变形及破坏特性,对花岗岩靶板引入了Holmquist-Johnson-Cook(HJC)本构模型及损伤模型,对弹体引入含损伤的Johnson-Cook(J-C)本构方程和Grüneisen状态方程,靶板与弹体均离散成拉格朗日粒子。通过自编程序仿真计算0~4 m/s的着靶速度下花岗岩靶板的三维侵彻过程,对比分析了钢珠在不同弹体条件下的侵彻结果,在固体侵彻、半流体侵彻和流体侵彻的区域内拟合了侵彻深度随着靶速度的变化曲线。数值计算结果显示,侵彻深度随着靶速度的增加在固体侵彻区间($ {v_0} <1421\;{\rm{m}}/{\rm{s}}$)呈现递增趋势,在半流体侵彻区间($ 1421\; {\rm{m}}/{\rm{s}} \leqslant {v_0}\leqslant1700 \;{\rm{m}}/{\rm{s}}$)呈现递减趋势,在流体侵彻区间(${v_0} > 1700\;{\rm{m}}/{\rm{s}} $)呈现递增趋势并逐渐趋于平滑,达到峰值。

     

  • 图  三维SPH粒子

    Figure  1.  Three-dimensional SPH particle

    图  侵彻速度与侵彻深度的关系

    Figure  2.  Penetration depth vs. penetration velocity

    图  不同速度下SPH数值模拟的成坑结果

    Figure  3.  Results of the pit at diferent penetration velocities by SPH

    图  LS-DYNA软件模拟成坑结果[1]

    Figure  4.  Result of the pit by LS-DYNA[1]

    图  花岗岩受撞击成坑的实验结果[1]

    Figure  5.  Experimental mesoscopic results of granite impacted pits[1]

    图  侵彻深度随着着靶速度的变化曲线

    Figure  6.  Penetration depth vs. penetration velocity

    图  侵彻深度与侵彻马赫数的关系曲线[4]

    Figure  7.  Penetration depth vs. Mach number Ma[4]

    图  不同侵彻速度下岩石靶板成坑结果

    Figure  8.  Size of the pit at different penetration velocities

    图  侵彻过程中弹目的压力变化图

    Figure  9.  Pressure change of the penetrating process

    图  10  0~4000 m/s速度范围内弹体分段作为刚体和非刚体的侵彻深度随着靶速度的变化

    Figure  10.  Value of the penetration depth and the penetration velocity from 0 to 4000 m/s

    图  11  0~800 m/s的初速度范围内刚体弹和非刚体弹体的侵彻深度随着靶速度的变化

    Figure  11.  Penetration depth vs. penetration velocity from 0 to 800 m/s

    图  12  0~4000 m/s的初速度范围内非刚体弹侵彻深度随着靶速度的变化关系

    Figure  12.  Penetration depth vs. penetration velocity from 0 to 4000 m/s

    图  13  1000~1600 m/s的着靶速度范围内非刚体弹侵彻深度随着靶速度的变化

    Figure  13.  Penetration depth vs. penetration velocity from 1000 to 1600 m/s

    表  1  花岗岩靶板的HJC强度模型参数

    Table  1.   Strength model parameters for the granite

    G/GPaρ/(kg∙m−3)A/MPaB/MPaN${\dot \varepsilon _0}/{s^{ - 1}}$Cfc′/MPaSmaxD1D2εf
    14.19280095016000.791.00.008126.5700.0341.00.01
    下载: 导出CSV

    表  2  花岗岩靶板的HJC状态方程参数

    Table  2.   Equation of state parameters for the granite

    pc/MPaμcpl/MPaμlT/MPaK1/GPaK2/GPaK3/GPa
    42.20.0032790.028.78685–171208
    下载: 导出CSV

    表  3  钢珠的材料参数

    Table  3.   Strength model parameters for the projectile

    G/GPaρ/(kg∙m−3)σy/GPaB/GPaNC1/(m∙s−1)CTmelt/KS1γ0M
    81.878000.2350.31.0335740.2616001.921.690.014
    下载: 导出CSV

    表  4  SPH数值模拟的侵彻深度结果

    Table  4.   Depth of pit formed by numerical simulation of SPH

    v0/(m∙s−1)h/mmv0/(m∙s−1)h/mm
    973.012024.20
    1093.292514.72
    1713.962694.91
    1753.97
    下载: 导出CSV
  • [1] KUANG Y C, LIN W, XU X F, et al. Study on the fragmentation of granite due to the impact of single particle and double particles [J]. Petroleum, 2016, 2(3): 267–272. doi: 10.1016/j.petlm.2016.04.001
    [2] TOBIAS H, FRANK S, KLAUS T, et al. Hypervelocity impacts on dry and wet sandstone: observations of ejecta dynamics and crater growth [J]. Meteoritics & Planetary Science, 2013, 48(1): 23–32.
    [3] 李争, 刘元雪, 胡明, 等. " 上帝之杖”天基动能武器毁伤效应评估 [J]. 振动与冲击, 2016, 35(18): 159–180.

    LI Z, LIU Y X, HU M, et al. Damage effect evaluation of god stick space-based kinetic energy weapons [J]. Journal of Vibration and Shock, 2016, 35(18): 159–180.
    [4] 王明洋, 邱艳宇, 李杰, 等. 超高速长杆弹对岩石侵彻、地冲击效应理论与实验研究 [J]. 岩石力学与工程学报, 2018, 37(3): 564–572.

    WANG M Y, QIU Y Y, LI J, et al. Theoretical and experimental study on rock penetration and ground impact effects of hypervelocity long rod projectiles [J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37(3): 564–572.
    [5] 强洪夫, 范树佳, 陈福振, 等. 基于SPH方法的聚能射流侵彻混凝土靶板数值模拟 [J]. 爆炸与冲击, 2016, 36(4): 516–524. doi: 10.11883/1001-1455(2016)04-0516-09

    QIANG H F, FAN S J, CHEN F Z, et al. Numerical simulation on penetration of concrete target by shaped charge jet with SPH method [J]. Explosion and Shock Waves, 2016, 36(4): 516–524. doi: 10.11883/1001-1455(2016)04-0516-09
    [6] LUCY L B. A numerical approach to the testing of the fission hypothesis [J]. Astronomical Journal, 1977, 8(12): 1013–1024.
    [7] MONAGHAN J J. Smoothed particle hydrodynamics [J]. Annual Review of Astronomy and Astrophysics, 1992, 30: 543–574. doi: 10.1146/annurev.aa.30.090192.002551
    [8] LIU G R, LIU M B. 光滑粒子流体动力学——一种无网格粒子法[M]. 韩旭, 杨刚, 强洪夫, 译. 长沙: 湖南大学出版社, 2005.

    LIU G R, LIU M B. Smoothed particle hydrodynamics: a meshfree particle method [M]. Translated by HAN X, YANG G, QIANG H F. Changsha: Hunan University Press, 2005.
    [9] 强洪夫. 光滑粒子流体动力学新方法及应用 [M]. 第2版. 北京: 科学出版社, 2017: 258–262.

    QIANG H F. The new method and application of smoothed particle hydrodynamics [M]. 2nd ed. Beijing: Science Press, 2017: 258–262.
    [10] JOHNSON G R, COOK W H. A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures [C]//7th International Symposium on Ballistics. The Hague, Netherlands, 1983.
    [11] 肖云凯, 方秦, 吴昊, 等. Johnson-Cook本构模型参数敏感度分析 [J]. 应用数学和力学, 2015, 36(Suppl): 21–28.

    XIAO Y K, FANG Q, WU H, et al. Analysis of parameter sensitivity for the Johnson-Cook constitutive model [J]. Applied Mathematics and Mechanics, 2015, 36(Suppl): 21–28.
    [12] HOLMQUIST T J, JOHNSON G R, COOK W H. A computational constitutive model for concrete subjective to large strain, high strain rates, and high pressure [C]//14th International Symposium on Ballistics. Québec, Canada, 1993: 591–600.
    [13] 李争, 刘元雪, 谭仪忠, 等. 钨合金动能弹超高速侵彻钢靶的破坏特性 [J]. 后勤工程学院学报, 2016, 32(1): 7–12. doi: 10.3969/j.issn.1672-7843.2016.01.002

    LI Z, LIU Y X, TAN Y Z, et al. Damage property of tungsten alloy kinetic energy projectile hypervelocity penetrating into steal target [J]. Journal of Logistical Engineering University, 2016, 32(1): 7–12. doi: 10.3969/j.issn.1672-7843.2016.01.002
    [14] 何翔, 徐翔云, 孙桂娟, 等. 弹体高速侵彻混凝土的效应实验 [J]. 爆炸与冲击, 2010, 30(1): 1–6. doi: 10.11883/1001-1455(2010)01-0001-06

    HE X, XU X Y, SUN G J, et al. Experimental investigation on projectiles’ high-velocity penetration into concrete targets [J]. Explosion and Shock Waves, 2010, 30(1): 1–6. doi: 10.11883/1001-1455(2010)01-0001-06
    [15] YOUNG C W. Penetration equation: SAND 97-2426 [R]. Albuquerque, NM: Sandia National Laboratories, 1997.
  • 加载中
图(13) / 表(4)
计量
  • 文章访问数:  6403
  • HTML全文浏览量:  3632
  • PDF下载量:  43
出版历程
  • 收稿日期:  2018-08-27
  • 修回日期:  2018-09-10

目录

    /

    返回文章
    返回