Application of SPH Method for Problem of Rock Penetration within the Wide-Ranged Velocity
-
摘要: 采用光滑粒子流体动力学(SPH)方法对花岗岩靶板受碰撞侵彻的大应变、高应变率变形问题进行了数值模拟。为了描述弹目材料的非线性变形及破坏特性,对花岗岩靶板引入了Holmquist-Johnson-Cook(HJC)本构模型及损伤模型,对弹体引入含损伤的Johnson-Cook(J-C)本构方程和Grüneisen状态方程,靶板与弹体均离散成拉格朗日粒子。通过自编程序仿真计算0~4 m/s的着靶速度下花岗岩靶板的三维侵彻过程,对比分析了钢珠在不同弹体条件下的侵彻结果,在固体侵彻、半流体侵彻和流体侵彻的区域内拟合了侵彻深度随着靶速度的变化曲线。数值计算结果显示,侵彻深度随着靶速度的增加在固体侵彻区间(
$ {v_0} <1421\;{\rm{m}}/{\rm{s}}$ )呈现递增趋势,在半流体侵彻区间($ 1421\; {\rm{m}}/{\rm{s}} \leqslant {v_0}\leqslant1700 \;{\rm{m}}/{\rm{s}}$ )呈现递减趋势,在流体侵彻区间(${v_0} > 1700\;{\rm{m}}/{\rm{s}} $ )呈现递增趋势并逐渐趋于平滑,达到峰值。-
关键词:
- 弹体 /
- 侵彻 /
- 花岗岩 /
- 光滑粒子流体动力学方法
Abstract: The smoothed particle hydrodynamics (SPH) method is used to simulate the deformation of penetration of granite at large strain and high strain rates. In order to describe the nonlinear deformation and failure characteristics of the projectile and target, the Holmquist-Johnson-Cook (HJC) constitutive model, damage model, Johnson-Cook (J-C) constitutive model and Grüneisen equation of state for granite are introduced, in which the projectile and the fortifications are discretized into Lagrangian particles. In simulation of three-dimensional penetration process of granite targets by self-made program at the speed from 0 m/s to 4000 m/s, we compare and analyzes the penetration results of steel balls under different projectile conditions. The curve of the penetration depth with the penetration velocity is fitted in solid penetration, semi-fluid penetration and fluid invasion. The numerical results show that the penetration depth increases with the increase of the penetration velocity in the solid penetration interval ($ {v_0} < 1421\;\,{\rm{m}}/{\rm{s}} $ ). A decreasing trend is shown in the semi-fluid penetration interval ($ 1421\;{\rm{m}}/{\rm{s}} \leqslant {v_0} \leqslant 1700\;{\rm{m}}/{\rm{s}} $ ), while an increasing trend is shown in the fluid penetration interval ($ 1421\;{\rm{m}}/{\rm{s}} < {v_0} <1700\;{\rm{m}}/{\rm{s}} $ ) and gradually tended to reach the peak.-
Key words:
- projectile /
- penetration /
- granite /
- smoothed particle hydrodynamics method
-
表 1 花岗岩靶板的HJC强度模型参数
Table 1. Strength model parameters for the granite
G/GPa ρ/(kg∙m−3) A/MPa B/MPa N ${\dot \varepsilon _0}/{s^{ - 1}}$ C fc′/MPa Smax D1 D2 εf 14.19 2800 950 1600 0.79 1.0 0.008 126.5 70 0.034 1.0 0.01 表 2 花岗岩靶板的HJC状态方程参数
Table 2. Equation of state parameters for the granite
pc/MPa μc pl/MPa μl T/MPa K1/GPa K2/GPa K3/GPa 42.2 0.003 279 0.02 8.786 85 –171 208 表 3 钢珠的材料参数
Table 3. Strength model parameters for the projectile
G/GPa ρ/(kg∙m−3) σy/GPa B/GPa N C1/(m∙s−1) C Tmelt/K S1 γ0 M 81.8 7800 0.235 0.3 1.03 3574 0.26 1600 1.92 1.69 0.014 表 4 SPH数值模拟的侵彻深度结果
Table 4. Depth of pit formed by numerical simulation of SPH
v0/(m∙s−1) h/mm v0/(m∙s−1) h/mm 97 3.01 202 4.20 109 3.29 251 4.72 171 3.96 269 4.91 175 3.97 -
[1] KUANG Y C, LIN W, XU X F, et al. Study on the fragmentation of granite due to the impact of single particle and double particles [J]. Petroleum, 2016, 2(3): 267–272. doi: 10.1016/j.petlm.2016.04.001 [2] TOBIAS H, FRANK S, KLAUS T, et al. Hypervelocity impacts on dry and wet sandstone: observations of ejecta dynamics and crater growth [J]. Meteoritics & Planetary Science, 2013, 48(1): 23–32. [3] 李争, 刘元雪, 胡明, 等. " 上帝之杖”天基动能武器毁伤效应评估 [J]. 振动与冲击, 2016, 35(18): 159–180.LI Z, LIU Y X, HU M, et al. Damage effect evaluation of god stick space-based kinetic energy weapons [J]. Journal of Vibration and Shock, 2016, 35(18): 159–180. [4] 王明洋, 邱艳宇, 李杰, 等. 超高速长杆弹对岩石侵彻、地冲击效应理论与实验研究 [J]. 岩石力学与工程学报, 2018, 37(3): 564–572.WANG M Y, QIU Y Y, LI J, et al. Theoretical and experimental study on rock penetration and ground impact effects of hypervelocity long rod projectiles [J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37(3): 564–572. [5] 强洪夫, 范树佳, 陈福振, 等. 基于SPH方法的聚能射流侵彻混凝土靶板数值模拟 [J]. 爆炸与冲击, 2016, 36(4): 516–524. doi: 10.11883/1001-1455(2016)04-0516-09QIANG H F, FAN S J, CHEN F Z, et al. Numerical simulation on penetration of concrete target by shaped charge jet with SPH method [J]. Explosion and Shock Waves, 2016, 36(4): 516–524. doi: 10.11883/1001-1455(2016)04-0516-09 [6] LUCY L B. A numerical approach to the testing of the fission hypothesis [J]. Astronomical Journal, 1977, 8(12): 1013–1024. [7] MONAGHAN J J. Smoothed particle hydrodynamics [J]. Annual Review of Astronomy and Astrophysics, 1992, 30: 543–574. doi: 10.1146/annurev.aa.30.090192.002551 [8] LIU G R, LIU M B. 光滑粒子流体动力学——一种无网格粒子法[M]. 韩旭, 杨刚, 强洪夫, 译. 长沙: 湖南大学出版社, 2005.LIU G R, LIU M B. Smoothed particle hydrodynamics: a meshfree particle method [M]. Translated by HAN X, YANG G, QIANG H F. Changsha: Hunan University Press, 2005. [9] 强洪夫. 光滑粒子流体动力学新方法及应用 [M]. 第2版. 北京: 科学出版社, 2017: 258–262.QIANG H F. The new method and application of smoothed particle hydrodynamics [M]. 2nd ed. Beijing: Science Press, 2017: 258–262. [10] JOHNSON G R, COOK W H. A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures [C]//7th International Symposium on Ballistics. The Hague, Netherlands, 1983. [11] 肖云凯, 方秦, 吴昊, 等. Johnson-Cook本构模型参数敏感度分析 [J]. 应用数学和力学, 2015, 36(Suppl): 21–28.XIAO Y K, FANG Q, WU H, et al. Analysis of parameter sensitivity for the Johnson-Cook constitutive model [J]. Applied Mathematics and Mechanics, 2015, 36(Suppl): 21–28. [12] HOLMQUIST T J, JOHNSON G R, COOK W H. A computational constitutive model for concrete subjective to large strain, high strain rates, and high pressure [C]//14th International Symposium on Ballistics. Québec, Canada, 1993: 591–600. [13] 李争, 刘元雪, 谭仪忠, 等. 钨合金动能弹超高速侵彻钢靶的破坏特性 [J]. 后勤工程学院学报, 2016, 32(1): 7–12. doi: 10.3969/j.issn.1672-7843.2016.01.002LI Z, LIU Y X, TAN Y Z, et al. Damage property of tungsten alloy kinetic energy projectile hypervelocity penetrating into steal target [J]. Journal of Logistical Engineering University, 2016, 32(1): 7–12. doi: 10.3969/j.issn.1672-7843.2016.01.002 [14] 何翔, 徐翔云, 孙桂娟, 等. 弹体高速侵彻混凝土的效应实验 [J]. 爆炸与冲击, 2010, 30(1): 1–6. doi: 10.11883/1001-1455(2010)01-0001-06HE X, XU X Y, SUN G J, et al. Experimental investigation on projectiles’ high-velocity penetration into concrete targets [J]. Explosion and Shock Waves, 2010, 30(1): 1–6. doi: 10.11883/1001-1455(2010)01-0001-06 [15] YOUNG C W. Penetration equation: SAND 97-2426 [R]. Albuquerque, NM: Sandia National Laboratories, 1997.