Improving Head Lid Structure Enhance Damage Effect of Aviation Bomb
-
摘要: 在不改变原型航空炸弹的质量特性和其他舱段功能特性的前提下,为有效利用航空炸弹的辅助舱段头罩,改进设计头罩成为内部装配破片的新结构,通过隔舱战斗部实现头罩破片的有效加载,毁伤面积提高20%以上,加强了航空炸弹对于理论落点和炸点投影点周围地面目标的有效打击。Abstract: Without changing the mass characteristics and other cabin features of a prototype, the damage area of aviation bomb can be increased by more than 20% via designing a new structure of internal fragments assembly in the head lid and effectively loading this head lid by compartment cabin. These two measures make effective use of head lid. The damage caused by aviation bomb to the ground targets near the expected fall point and blast point is also enhanced.
-
Key words:
- ammunition engineering /
- aviation bomb /
- damage area /
- fragment
-
表 1 原型头罩与改进头罩的对比
Table 1. Comparison of the prototype and improved head lids
Head lid Mass/kg Center of mass/mm
(from the head)Shell Number of
fragmentsScatters angle/(°) The prototype 3.5 100 Alloy steel Less fragments The improved 3.5 100 Nonmetal 875 ≈100 表 2 COMP B炸药的材料参数
Table 2. Material parameters of COMP B explosive
$ \rho/\left( {{\rm{g}} \cdot {{\rm{cm}}^{ - 3}}} \right)$ p/GPa D/(m·s–1) K A/GPa B/GPa $ \omega $ R1 R2 e0/(GJ·m–3) 1.72 29.5 7980 3.0 524.2 7.68 0.34 4.2 1.1 8.5 表 3 有机玻璃的材料参数
Table 3. Material parameters of PMMA
$ \rho /\left( {{\rm{kg}} \cdot {{\rm{m}}^{ - 3}}} \right)$ E C0 S1 1257 150 1.18 1.319 表 4 空气的材料参数
Table 4. Material parameters of air
$ \rho /\left( {{\rm{kg}} \cdot {{\rm{m}}^{ - 3}}} \right)$ $ \gamma$ T0/℃ CV/(J·kg–1·K–1) 1.225 1.4 288 717.5 表 5 钢的材料参数
Table 5. Material parameters of steel
$ \rho /\left( {{\rm{kg}} \cdot {{\rm{m}}^{ - 3}}} \right)$ G0/GPa $ {\sigma _0}/{\rm{MPa}}$ $ \beta $ n $ {\sigma _{\rm{m}}}/{\rm{MPa}}$ Tm0/℃ C0 S1 $ \gamma$ 7896 81.8 350 27.5 0.36 1052 1811 0.394 1.49 2.17 表 6 硬铝的材料参数
Table 6. Material parameters of duralumin
$ \rho /\left( {{\rm{kg}} \cdot {{\rm{m}}^{ - 3}}} \right)$ G0/GPa $ {\sigma _0}/{\rm{MPa}}$ $ \beta $ n $ {\sigma _{\rm{m}}}/{\rm{MPa}}$ Tm0/℃ C0 S1 $ \gamma$ 2785 26.9 290 31.0 0.18 810 638 0.52 1.36 2.2 -
[1] 贾秋锐, 孙媛媛, 肖树臣, 等. 航空制导炸弹发展趋势 [J]. 制导与引信, 2014, 35(1): 8–11. doi: 10.3969/j.issn.1671-0576.2014.01.002JIA Q R, SUN Y Y, XIAO S C, et al. Development trend of the aerial guided bomb [J]. Guidance and Fuze, 2014, 35(1): 8–11. doi: 10.3969/j.issn.1671-0576.2014.01.002 [2] 朱平安, 张晓龙. 无人机载制导航弹的发展综述 [J]. 四川兵工学报, 2015(3): 5–8. doi: 10.11809/scbgxb2015.03.002ZHU P A, ZHANG X L. Review of development of UAV guided bomb [J]. Journal of Sichuan Ordnance, 2015(3): 5–8. doi: 10.11809/scbgxb2015.03.002 [3] 熊伟, 郭美芳, 李宝峰, 等. 无人机载弹药的发展 [J]. 兵器知识, 2012(7): 16–19.XIONG W, GUO M F, LI B F, et al. Development of unmanned aerial munitions [J]. Ordnance Knowledge, 2012(7): 16–19. [4] 杨晓红, 何慧珠, 唐宏, 等. 航空炸弹杀爆战斗部综合毁伤分析研究 [J]. 中北大学学报(自然科学版), 2012, 33(3): 246–250.YANG X H, HE H Z, TANG H, et al. Research on comprehensive damage of warhead of an aerial high explosive bomb [J]. Journal of North University of China (Natural Science Edition), 2012, 33(3): 246–250. [5] 龚程奎. 现代航空炸弹综述 [J]. 科技传播, 2014, 6(13): 74–75.GONG C K. Modern aerial bomb review [J]. Science and Technology Communication, 2014, 6(13): 74–75. [6] 胡冬冬, 何煦虹. 国外新一代机载小型精确制导武器发展现状及趋势 [J]. 飞航导弹, 2010(8): 17–25.HU D D, HE X H. The present situation and development trend of foreign new generation of small airborne precision guided weapon [J]. Cruise Missile, 2010(8): 17–25. [7] 康凤, 闫峰, 杨鄂川, 等. 轻合金在国外航空炸弹上的应用研究 [J]. 材料导报, 2014, 28(Suppl 2): 136–138.KANG F, YAN F, YANG E C, et al. Application of the light structure material in the foreign aerial bomb [J]. Material Guide, 2014, 28(Suppl 2): 136–138. [8] LI X, WANG D B, WANG Q. Design and realization of a hardware-in-the-loop simulation system for aerial guided bombs [C]//The 2nd International Symposium on Systems and Control in Aerospace and Astronautics. Shenzhen, 2008: 1–5. [9] 郭刚虎, 齐杏林, 陈振有. 钢珠杀伤弹改钢钨珠混装战斗部研究 [J]. 弹箭与制导学报, 2005, 25(4): 175–177.GUO G H, QI X L, CHEN Z Y. Research on steel ball high explosive projectile using steel and tungsten ball composite warhead [J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2005, 25(4): 175–177. [10] 李明星,王志军,黄阳洋,等. 不同形状轴向预制破片的飞散特性研究 [J]. 兵器装备工程学报, 2017, 38(12): 65–69.LI M X,WANG Z J,HUANG Y Y,et al. Study on the scattering characteristics of different shape axial prefabricated fragment [J]. Journal of Ordnance Equipment Engineering, 2017, 38(12): 65–69. [11] MOXNES J F, PRYTZ A K, FRФYLAND Ф. Experimental and numerical study of the fragmentation of expanding warhead casings by using different numerical codes and solution techniques [J]. Defence Technology, 2014, 10(2): 161–176. doi: 10.1016/j.dt.2014.05.009 [12] HUTCHINSON M D, PRICE D W. On the continued acceleration of bomb casing fragments following casing fracture [J]. Defence Technology, 2014, 10(2): 211–218. doi: 10.1016/j.dt.2014.06.001 [13] Century Dynamics Inc. AUTODYN user’s manuals (Version 5) [Z]. San Ramon, CA: Century Dynamics Inc, 2004. [14] 孙素杰, 杨伟苓, 苗成, 等. 反击弹破片飞散特性研究 [J]. 兵器材料科学与工程, 2015, 38(3): 66–68.SUN S J, YANG W L, MIAO C, et al. Fragment scattering characteristic of attacking bomb [J]. Ordnance Material Science and Engineering, 2015, 38(3): 66–68. [15] 隋树元, 王树山. 终点效应学 [M]. 北京: 国防工业出版社, 2000: 102.SUI S Y, WANG S S. End effect [M]. Beijing: National Defence Industry Press, 2000: 102. [16] 梁安定, 曹玉武, 孙兴昀. 飞机挂载杀爆战斗部的毁伤效能分析 [C]//全国毁伤评估技术学术研讨会论文集. 北京: 中国兵工学会, 2015: 824–830.LIANG A D, CAO Y W, SUN X Y. Analysis on the damage effectiveness of the aircraft mounted kill warhead [C]//Proceedings of National Symposium on Damage Assessment Technology. Beijing: China Ordnance Society, 2015: 824–830.