温度与CO气体耦合作用对瓦斯爆炸界限影响实验

白刚 周西华 宋东平

白刚, 周西华, 宋东平. 温度与CO气体耦合作用对瓦斯爆炸界限影响实验[J]. 高压物理学报, 2019, 33(4): 045203. doi: 10.11858/gywlxb.20180612
引用本文: 白刚, 周西华, 宋东平. 温度与CO气体耦合作用对瓦斯爆炸界限影响实验[J]. 高压物理学报, 2019, 33(4): 045203. doi: 10.11858/gywlxb.20180612
BAI Gang, ZHOU Xihua, SONG Dongping. Experimental Study on the Coupling Influence of Temperature and CO Concentration on CH4 Explosion Limit[J]. Chinese Journal of High Pressure Physics, 2019, 33(4): 045203. doi: 10.11858/gywlxb.20180612
Citation: BAI Gang, ZHOU Xihua, SONG Dongping. Experimental Study on the Coupling Influence of Temperature and CO Concentration on CH4 Explosion Limit[J]. Chinese Journal of High Pressure Physics, 2019, 33(4): 045203. doi: 10.11858/gywlxb.20180612

温度与CO气体耦合作用对瓦斯爆炸界限影响实验

doi: 10.11858/gywlxb.20180612
基金项目: 国家自然科学基金(51274115);辽宁省教育厅城市研究院重点项目(LJCL001)
详细信息
    作者简介:

    白 刚(1991-),男,博士,讲师,主要从事矿井瓦斯灾害与火灾防治研究. E-mail:1272661640@qq.com

    通讯作者:

    周西华(1968-),男,博士,教授,主要从事矿井瓦斯灾害与火灾防治研究. E-mail:xihua_zhou68@163.com

  • 中图分类号: O383

Experimental Study on the Coupling Influence of Temperature and CO Concentration on CH4 Explosion Limit

  • 摘要: 针对煤矿火区封闭过程中常发生的瓦斯爆炸问题,运用20 L爆炸装置,实验研究了不同环境温度(25~200 ℃)和CO浓度(1%~10%,体积分数)条件下瓦斯的爆炸极限和最大爆炸压力。结果表明:单因素可燃性气体CO体积分数升高,瓦斯爆炸上限、下限均下降,爆炸极限范围变宽;温度升高,爆炸上限升高,下限下降;常压条件下,随着温度升高,爆炸上限与初始温度呈二次函数关系变化,爆炸下限与初始温度呈对数关系变化;瓦斯爆炸上限与下限爆炸压力随着初始温度升高均降低,随着CO体积分数升高均升高。多因素高温与CO气体耦合作用下,瓦斯爆炸上限升高,下限下降,瓦斯爆炸危险性增加;初始温度和CO气体对爆炸极限的耦合影响比单一因素的影响大,对爆炸上限的影响更为显著。

     

  • 图  爆炸装置系统示意图

    Figure  1.  Schematic diagram of explosive device

    图  不同温度下瓦斯的爆炸极限(常压)

    Figure  2.  CH4 explosion limits under different temperatures (ambient pressure)

    图  不同CO浓度时瓦斯爆炸极限(温度100 ℃)

    Figure  3.  CH4 explosion limits with different CO concentration(T=100 ℃)

    图  瓦斯爆炸压力与温度关系

    Figure  4.  Relationship between CH4 explosion pressure and temperature

    图  瓦斯爆炸压力与CO体积分数关系

    Figure  5.  Relationship between CH4 explosion pressure and CO volume fraction

    图  不同CO体积分数下瓦斯爆炸极限与温度的关系

    Figure  6.  Relationship between CH4 explosion limits and temperature under different CO concentrations

    图  不同温度下瓦斯爆炸极限与CO体积分数的关系

    Figure  7.  Relationship between CH4 explosion limit and CO concentration

    图  初始温度与CO气体浓度对甲烷爆炸极限的耦合影响

    Figure  8.  Coupling influence of initial temperature and CO concentration on CH4 explosion limit

    表  1  实验数据与历史数据对比

    Table  1.   Comparison of experimental data with historical data

    Researchers LEL/% UEL/%
    Kondo, et al.[19] 5.0 15.5
    Vanderstraeten, et al.[20] 4.6±0.3 15.8±0.4
    Li, et al.[13] 5.0±0.1 15.7±0.1
    This study 5.29 13.16
    下载: 导出CSV

    表  2  不同温度条件下瓦斯爆炸极限与爆炸压力(常压)

    Table  2.   CH4 explosion limit and explosion pressure under different temperatures (ambient pressure)

    Temperature/℃ UEL/% LEL/% UEL pressure/MPa LEL pressure/MPa
    25 13.16 5.29 0.62 0.100
    50 12.50 5.20 0.58 0.081
    75 12.40 4.90 0.56 0.073
    100 12.30 4.50 0.56 0.073
    120 12.40 4.40 0.52 0.065
    200 12.80 4.30 0.45 0.052
    下载: 导出CSV

    表  3  不同CO浓度时瓦斯爆炸极限与爆炸压力(温度100 °C)

    Table  3.   CH4 explosion limit and explosion pressure with different concentrations of CO (T=100 °C)

    CO concentration/% UEL/% LEL/% UEL pressure/MPa LEL pressure/MPa
    1 17.7 4.5 0.42 0.27
    5 16.5 2.8 0.52 0.27
    10 16.0 0.7 0.56 0.28
    下载: 导出CSV

    表  4  温度与CO浓度耦合条件下拟合函数各参数

    Table  4.   Function fitting parameters under coupling conditions with varying temperatures and CO concentrations

    Explosion limit a b c R2
    UEL 15.581 15 0.024 67 –0.257 92 0.863 63
    LEL 6.471 86 –0.012 67 –0.470 77 0.990 92
    下载: 导出CSV
  • [1] 周心权.矿井火灾防治 [M]. 徐州: 中国矿业大学出版社, 2002: 146–160.
    [2] 王海燕, 冯超, 王忠文, 等. 封闭火区注惰危险性和临界注惰参数 [J]. 煤炭学报, 2014, 39(Suppl 1): 117–122.

    WANG H Y, FENG C, WANG Z W, et al. Dangers and critical parameters of inert gas injection during mine fire sealing [J]. Journal of China Coal Society, 2014, 39(Suppl 1): 117–122.
    [3] 梁运涛, 罗海珠. 中国煤矿火灾防治技术现状与趋势 [J]. 煤炭学报, 2008, 33(2): 126–130. doi: 10.3321/j.issn:0253-9993.2008.02.002

    LIANG Y T, LUO H Z. Current situation and development trend for coal mine fire prevention & extinguishing techniques in China [J]. Journal of China Coal Society, 2008, 33(2): 126–130. doi: 10.3321/j.issn:0253-9993.2008.02.002
    [4] 丁百川. 四天里的五次爆炸 [J]. 劳动保护, 2013, 12: 32–35. doi: 10.3969/j.issn.1000-4335.2013.12.009

    DING B C. Five explosions in four days [J]. Labour Protection, 2013, 12: 32–35. doi: 10.3969/j.issn.1000-4335.2013.12.009
    [5] 高娜, 张延松, 胡毅亭. 温度、压力对甲烷-空气混合物爆炸极限耦合影响的实验研究 [J]. 爆炸与冲击, 2017, 37(3): 453–458. doi: 10.11883/1001-1455(2017)03-0453-06

    GAO N, ZHANG Y S, HU Y T. Experimental study on methane-air mixtures explosion limits at normal and elevated initial emperatures and pressures [J]. Explosion and Shock Waves, 2017, 37(3): 453–458. doi: 10.11883/1001-1455(2017)03-0453-06
    [6] 俞启香.矿井瓦斯防治 [M]. 徐州: 中国矿业大学出版社, 1992: 40–52.

    YU Q X. Mine methane prevention [M]. Xuzhou: China University of Mining and Technology Press, 1992: 40–52.
    [7] 王华, 邓军, 葛玲梅. 初始压力对矿井可燃性气体爆炸特性的影响 [J]. 煤炭学报, 2011, 36(3): 423–428.

    WANG H, DENG J, GE L M. Influence of initial pressure on explosion characteristics of flammable gases in coal mine [J]. Journal of China Coal Society, 2011, 36(3): 423–428.
    [8] 李润之, 黄子超, 司荣军. 环境温度对瓦斯爆炸压力及压力上升速率的影响 [J]. 爆炸与冲击, 2013, 33(4): 415–419. doi: 10.3969/j.issn.1001-1455.2013.04.013

    LI R Z, HUANG Z C, SI R J. Influence of environmental temperature on gas explosion pressure and its rise rate [J]. Explosion and Shock Waves, 2013, 33(4): 415–419. doi: 10.3969/j.issn.1001-1455.2013.04.013
    [9] 肖丹.受限空间瓦斯爆炸特性及其影响因素研究 [D].阜新: 辽宁工程技术大学, 2006.
    [10] 高娜, 张延松, 胡毅亭. 温度压力对瓦斯爆炸危险性影响的实验研究 [J]. 爆炸与冲击, 2016, 36(2): 218–223. doi: 10.11883/1001-1455(2016)02-0218-06

    GAO N, ZHANG Y S, HU Y T. Experimental study on gas explosion hazard under different temperatures and pressures [J]. Explosion and Shock Waves, 2016, 36(2): 218–223. doi: 10.11883/1001-1455(2016)02-0218-06
    [11] 司荣军. 温度压力耦合对甲烷爆炸极限影响的试验研究 [J]. 安全与环境学报, 2014, 14(4): 32–35.

    SI R J. Experimental study on the explosion limits of methane under coupling effects of temperature and pressure [J]. Journal of Safety and Environment, 2014, 14(4): 32–35.
    [12] CUI G, LI Z L, YANG C. Experimental study of flammability limits of methane/air mixtures at low temperatures and elevated pressures [J]. Fuel, 2016, 181: 1074–1080. doi: 10.1016/j.fuel.2016.04.116
    [13] LI Z M, GONG M Q, SUN E Y, et al. Effect of low temperature on the flammability limits of methane/nitrogen mixtures [J]. Energy, 2011, 36: 5521–5524. doi: 10.1016/j.energy.2011.07.023
    [14] KARIM G A, WIERZBA I, BOON S. The lean flammability limits in air of methane, hydrogen and carbon monoxide at low temperatures [J]. Cryogenics, 1984, 24(6): 305–308. doi: 10.1016/0011-2275(84)90139-5
    [15] 周西华, 孟乐, 史美静, 等. 高瓦斯矿发火区封闭时对瓦斯爆炸界限因素的影响 [J]. 爆炸与冲击, 2013, 33(4): 351–356. doi: 10.3969/j.issn.1001-1455.2013.04.003

    ZHOU X H, MENG L, SHI M J, et al. Influences of sealing fire zone in high gas mine on impact factors of gas explosion limits [J]. Explosion and Shock Waves, 2013, 33(4): 351–356. doi: 10.3969/j.issn.1001-1455.2013.04.003
    [16] GIERAS M, KLEMENS R, RARATA G, et al. Determination of explosion parameters of methane-air mixtures in the chamber of 40 dm3 at normal and elevated temperature [J]. Journal of Loss Prevention in the Process Industries, 2006, 19(2/3): 263–270.
    [17] DIN. Determination of explosion limits of gases and vapours: DIN EN 1839-2004 [S]. Berlin: DIN, 2004.
    [18] ASTM International. Standard test methods for limiting oxygen (oxidant) concentration in gases and vapors: ASTME2079-07 [S]. American Society for Testing and Materials, 2013: 1–2.
    [19] KONDO S, TAKIZAWA K, TAKAHASHI A, et al. On the temperature dependence of flammability limits of gases [J]. Journal of Hazardous Materials, 2011, 187(1/2/3): 585–590.
    [20] VANDERSTRAETEN B, TUERLINCKX D, BERGHMANS J, et al. Experimental study of the pressure and temperature dependence on the upper flammability limit of methane/air mixtures [J]. Journal of Hazardous Materials, 1997, 56(3): 237–246. doi: 10.1016/S0304-3894(97)00045-9
    [21] 欧文·格拉斯曼. 燃烧学 [M]. 赵惠富, 张宝诚, 译. 北京: 科学出版社, 1983.
  • 加载中
图(8) / 表(4)
计量
  • 文章访问数:  6001
  • HTML全文浏览量:  2536
  • PDF下载量:  17
出版历程
  • 收稿日期:  2018-08-09
  • 修回日期:  2018-08-26
  • 发布日期:  2018-04-25

目录

    /

    返回文章
    返回