内压、弯扭耦合载荷下连续管疲劳寿命评估

周浩 刘少胡 管锋

周浩, 刘少胡, 管锋. 内压、弯扭耦合载荷下连续管疲劳寿命评估[J]. 高压物理学报, 2019, 33(4): 044104. doi: 10.11858/gywlxb.20180611
引用本文: 周浩, 刘少胡, 管锋. 内压、弯扭耦合载荷下连续管疲劳寿命评估[J]. 高压物理学报, 2019, 33(4): 044104. doi: 10.11858/gywlxb.20180611
ZHOU Hao, LIU Shaohu, GUAN Feng. Fatigue Life Evaluation of Coiled Tube under Coupled Load of Internal Pressure, Bending and Torsion[J]. Chinese Journal of High Pressure Physics, 2019, 33(4): 044104. doi: 10.11858/gywlxb.20180611
Citation: ZHOU Hao, LIU Shaohu, GUAN Feng. Fatigue Life Evaluation of Coiled Tube under Coupled Load of Internal Pressure, Bending and Torsion[J]. Chinese Journal of High Pressure Physics, 2019, 33(4): 044104. doi: 10.11858/gywlxb.20180611

内压、弯扭耦合载荷下连续管疲劳寿命评估

doi: 10.11858/gywlxb.20180611
基金项目: 国家自然科学基金(51604039);长江大学长江青年科技创新团队基金(2016CQT01);长江大学青年基金(2015CQN44)
详细信息
    作者简介:

    周 浩(1995-),男,硕士研究生,主要从事连续管装备研究. E-mail:zhjs0210@126.com

    通讯作者:

    刘少胡(1984-),男,博士,副教授,主要从事连续管疲劳寿命评估研究. E-mail:liushaoh@126.com

  • 中图分类号: TE925

Fatigue Life Evaluation of Coiled Tube under Coupled Load of Internal Pressure, Bending and Torsion

  • 摘要: 针对连续管在作业中易出现疲劳失效等问题,进行了连续管在内压、弯扭耦合加载下疲劳寿命评估。首先分析了耦合加载下连续管低周疲劳失效机理,基于Brown-Miller疲劳寿命模型建立了连续管疲劳寿命数值计算模型,开展了内压和弯曲加载下连续管疲劳实验,实验结果证实该数值模型是可行的。计算了内压和弯曲耦合加载下连续管低周疲劳寿命,以及内压和弯扭耦合加载下连续管低周疲劳寿命。计算结果表明,连续管最大塑性应变和疲劳敏感区出现在轴向拉伸面和压缩面,与现场连续管失效情况是一致的。通过计算得到了连续管安全服役的临界扭矩值和内压值。

     

  • 图  连续管作业示意图

    Figure  1.  Operation diagram of coiled tube

    图  疲劳寿命计算流程

    Figure  2.  Fatigue life calculation flow chart

    图  连续管有限元模型

    Figure  3.  Finite element model of coiled tube

    图  连续管疲劳寿命云图

    Figure  4.  Fatigue life distribution map on coiled tube

    图  连续管低周疲劳塑性应变云图

    Figure  5.  Low-cycle fatigue plastic strain distribution map on coiled tube

    图  弯曲和内压对疲劳寿命的影响

    Figure  6.  Effects of bending and internal pressure on fatigue life

    图  连续管疲劳测试装置示意图

    Figure  7.  Schematic diagram of coiled tube fatigue test device

    1. Straight mode; 2. Flexing mode; 3. Sample; 4. Fixtures; 5. Base; 6. Accumulator; 7. Check valve; 8. Supercharger; 9. Liquid pool; 10. Air valve; 11. Micro air compressor; 12. Valve; 13. Connecting pipe; 14. Cylinder;15. Support; 16. Active connector; 17. Pressure relief valve

    图  实验结果与数值计算结果对比

    Figure  8.  Comparison of experimental results with numerical simulation results

    图  弯扭内压耦合载荷下扭矩对疲劳循环次数的影响

    Figure  9.  Effect of torque on fatigue cycle number under the coupled load of moment, torque and internal pressure

    表  1  连续管材料属性和参数[1617]

    Table  1.   Material properties and coiled tube parameters[1617]

    Material type Outer diameter/mm Wall thickness/mm Elastic modulus/MPa Poisson’s ratio
    CT-800 60.325 4.775 210 000 0.3
    Yield stress/MPa Cyclic strain hardening
    coefficient/MPa
    Cyclic strain
    hardening index
    Section shrinkage/%
    552 785 0.1 58.18
    下载: 导出CSV

    表  2  有限元模拟值与实验值对比

    Table  2.   Comparison of finite element simulation results and experimental results

    Internal pressure/MPa Experimental value/N Finite element value/N Error/%
    65 50 45 10
    65 49 45 8
    65 52 45 13
    下载: 导出CSV

    表  3  内压、扭矩对连续管疲劳寿命的影响

    Table  3.   Influence of internal pressure and torque on fatigue life of coiled tube

    Torque/(N·m) Fatigue life Torque/(N·m) Fatigue life
    0 MPa 30 MPa 60 MPa 0 MPa 30 MPa 60 MPa
    1000 >107 >107 >107 7300 8650 352
    4000 >107 >107 >107 7400 2090 280
    5500 >107 >107 >107 7420 745 234
    5800 >107 ≥107 ≥107 7450 349 196
    6000 >107 1331 111 7480 238 145
    6200 >107 856 38 7500 179 122
    6400 ≥107 623 1 7700 18
    6800 36 890 408
    下载: 导出CSV
  • [1] GHOBADI M, MUZYCHKA Y S. Pressure drop in mini-scale coiled tubing [J]. Experimental Thermal and Fluid Science, 2014, 57: 57–64. doi: 10.1016/j.expthermflusci.2014.04.011
    [2] 袁发勇, 马卫国. 连续管水平井工程技术 [M]. 北京: 科学出版社, 2018: 1–19.

    YUAN F Y, MA W G. Coiled tubing engineering technology in horizontal wells [M]. Beijing: Science Press, 2018: 1–19.
    [3] ISHAK J. Numerical evaluation of cyclic strains in physically small defects in coiled tubing [D]. Tulsa, OK: The University of Tulsa, 2016: 1–9.
    [4] OYEDOKUN O, SCHUBERT J. Extending the reach of coiled tubing in directional wells with downhole motors [C]//SPE/ICoTA Coiled Tubing and Well Intervention Conference & Exhibition. Woodlands, TX, 2014.
    [5] TIPTON S M, CARLSON G H, SOREM J R. Fatigue integrity analysis of rotating coiled tubing [C]//SPE/ICoTA Coiled Tubing and Well Intervention Conference and Exhibition. Woodlands, TX, 2006.
    [6] 毕宗岳, 张晓峰, 张万鹏. 连续管疲劳寿命试验研究 [J]. 焊管, 2012, 35(6): 5–8. doi: 10.3969/j.issn.1001-3938.2012.06.001

    BI Z Y, ZHANG X F, ZHANG W P. Research on fatigue life test of coiled tubing [J]. Welded Pipe, 2012, 35(6): 5–8. doi: 10.3969/j.issn.1001-3938.2012.06.001
    [7] NEWMAN K R, NEWBURN D A. Coiled-tubing-life modeling: SPE22820 [R]. Richardson, TX: Society of Petroleum Engineers , 1991.
    [8] NEWMAN K R. Determining the working life of a coiled tubing string [J]. Offshore Incorporating Oilman, 1991, 51(12): 31–36.
    [9] AVAKOV V A, MARTIN J. Large coiled tubing fatigue life [C]//SPE/ICoTA North American Coiled Tubing Roundtable. Richardson, TX: Society of Petroleum Engineers, 1997.
    [10] 王优强, 张嗣伟, 方爱国. 连续管的失效形式与原因概述 [J]. 石油矿场械, 1999, 28(4): 15–l8.

    WANG Y Q, ZHANG S W, FANG A G. Overview of failure modes and causes of coiled tubing [J]. Oil Field Equipment, 1999, 28(4): 15–l8.
    [11] 何春生. 连续油管低周疲劳寿命预测及屈曲分析方法研究[D]. 大庆: 东北石油大学, 2014: 17–47.

    HE C S. The prediction of low cycle fatigue life and study of buckling analysis method for coiled tubing [D]. Daqing: Northeast Petroleum University, 2014: 17–47.
    [12] 李子丰, 李雪娇, 王鹏. 预弯曲连续油管及其疲劳寿命预测 [J]. 石油学报, 2012, 33(4): 706–710.

    LI Z F, LI X J, WANG P. Pre-bending coiled tubing and its fatigue life prediction [J]. Acta Petrolei Sinica, 2012, 33(4): 706–710.
    [13] LIU S H, XIAO H, GUAN F, et al. Coiled tubing failure analysis and ultimate bearing capacity under multi-group load [J]. Engineering Failure Analysis, 2017, 79(9): 803–811.
    [14] 尚德广, 王德俊. 多轴疲劳强度 [M]. 北京:科学出版社, 2007: 118–128.

    SHANG D G, WANG D J. Multiaxial fatigue strength [M]. Beijing: Science Press, 2007: 118–128.
    [15] 林腾蛟, 沈亮, 赵俊渝. 风电增速箱输出级齿轮副疲劳寿命有限元分析 [J]. 重庆大学学报, 2012, 35(1): 1–6.

    LIN T J, SHEN L, ZHAO J Y. Fatigue life finite element analysis of output gear pair of wind turbine speed-increase gearbox [J]. Journal of Chongqing University, 2012, 35(1): 1–6.
    [16] JIANG Y, SEHIITOGLU H. Modeling of cyclic ratcheting plasticity [J]. Journal of Applied Mechanics, 1996, 63(3): 726–733. doi: 10.1115/1.2823356
    [17] AMITKUMAR C. Local strain approach for fatigue life prediction of coiled tubing with surface defects [D]. Tulsa, OK: The University of Tulsa, 2010.
    [18] PEROZO N, PAZ C A, TEODORIU C, et al. A novel testing facility for coiled tubing fatigue valuation under deep drilling conditions [C]//SPE Western Regional Meeting. Anchorage, AK, 2016.
    [19] 周永霞. 先进技术提高了连续油管钻井能力 [J]. 国外石油机械, 1996, 7(3): 14–16.

    ZHOU Y X. Advanced technology improves the ability of coiled tubing drilling [J]. Foreign Petroleum Machinery, 1996, 7(3): 14–16.
    [20] 赵章明. 连续油管工程技术手册 [M]. 北京:石油工业出版社, 2011: 39–49.

    ZHAO Z M. Coiled tubing engineering technical manual [M]. Beijing: Petroleum Industry Press, 2011: 39–49.
  • 加载中
图(9) / 表(3)
计量
  • 文章访问数:  6026
  • HTML全文浏览量:  2585
  • PDF下载量:  14
出版历程
  • 收稿日期:  2018-08-08
  • 修回日期:  2018-08-21

目录

    /

    返回文章
    返回