极端冲击下激波诱导附加电场加速金属/气体界面的经验模型

张嘉炜 黄生洪

张嘉炜, 黄生洪. 极端冲击下激波诱导附加电场加速金属/气体界面的经验模型[J]. 高压物理学报, 2019, 33(1): 012301. doi: 10.11858/gywlxb.20180607
引用本文: 张嘉炜, 黄生洪. 极端冲击下激波诱导附加电场加速金属/气体界面的经验模型[J]. 高压物理学报, 2019, 33(1): 012301. doi: 10.11858/gywlxb.20180607
ZHANG Jiawei, HUANG Shenghong. Acceleration Evaluation Model of Metal/Gas Interface by Extra Electric Field Induced by Shock under Extreme Impacting Conditions[J]. Chinese Journal of High Pressure Physics, 2019, 33(1): 012301. doi: 10.11858/gywlxb.20180607
Citation: ZHANG Jiawei, HUANG Shenghong. Acceleration Evaluation Model of Metal/Gas Interface by Extra Electric Field Induced by Shock under Extreme Impacting Conditions[J]. Chinese Journal of High Pressure Physics, 2019, 33(1): 012301. doi: 10.11858/gywlxb.20180607

极端冲击下激波诱导附加电场加速金属/气体界面的经验模型

doi: 10.11858/gywlxb.20180607
基金项目: 国家自然科学基金(U1530125);科学挑战专题(TZ2016001)
详细信息
    作者简介:

    张嘉炜(1994-),男,硕士研究生,主要从事界面不稳定性分子动力学研究. E-mail: jwzhang9@mail.ustc.edu.cn

    通讯作者:

    黄生洪(1974-),男,博士,副教授,主要从事极端冲击动力学研究. E-mail: hshnpu@ustc.edu.cn

  • 中图分类号: O521.2; O357.4

Acceleration Evaluation Model of Metal/Gas Interface by Extra Electric Field Induced by Shock under Extreme Impacting Conditions

  • 摘要: 采用基于电子力场势函数的分子动力学方法,模拟了极端冲击压缩(22.50~78.75 km/s)下Li/H2界面的演化过程。计算结果表明,在极端冲击压缩条件下,激波压缩导致物质电离,由于电子和离子的扩散差异,激波附近出现电荷分离区,进而诱导出现附加电场。通过沿激波传播方向进行一维电荷统计和理论分析,发现在激波强度一定的情况下,随着激波的运动,电荷分离区的强度和宽度在整个过程中基本保持恒定,与激波强度正相关;进一步对电荷分布进行积分,得到由电荷分离引起的附加电场沿冲击波传播方向的变化。统计分析了附加电场影响下金属/气体界面附近金属侧物质产生的加速度随时间的变化,发现附加加速过程呈脉冲形态,满足Rayleigh模型。通过计算拟合,得到该模型的关键参数与初始冲击加载速度的关系,最终获得电离诱导附加电场引起界面金属侧物质附加加速度的经验计算公式。

     

  • 图  计算模型

    Figure  1.  Computational model

    图  电荷密度分布一维模型以及电荷分离区宽度和强度的时间历程 (vp=22.50 km/s)

    Figure  3.  1D model of charge density distribution and time histories of the width and intensity of the electron-ion separation zone for vp =22.50 km/s

    图  vp=22.50 km/s时电荷密度分布一维统计及其随时间的变化

    Figure  2.  1D statistic of charge density distribution for vp=22.50 km/s case and its patterns at different moments

    图  一维附加电场和附加加速度(t=2.75 ps,vp=22.50 km/s)的eFF MD统计分析结果和基于1D电荷密度模型的计算结果对比

    Figure  4.  Comparison of 1D extra electric field and extra acceleration of materials between results of eFF MD statistics and 1D charge density model (t=2.75 ps of vp =22.50 km/s case)

    图  不同冲击加载速度vp下界面金属侧物质附加加速度的变化历程

    Figure  5.  Acceleration time histories of material located at the metal side of the interface at different vp

    图  Rayleigh模型的amaxτrisevp的拟合关系

    Figure  6.  Fitted correlations of amax and τrise with vp in Rayleigh model

    表  1  不同冲击加载速度下分离区的宽度和强度统计

    Table  1.   Statistics of the width and intensity of the electron-ion separation zone at different impact velocities

    vp/(km·s–1) Width/nm Intensity/(108 C·m–3)
    22.50 4.65 4.55
    45.00 6.40 6.11
    67.50 8.65 10.25
    下载: 导出CSV

    表  2  不同加载速度下Rayleigh模型的拟合参数

    Table  2.   The fitted parameters of Rayleigh model at different vp

    vp/(km·s–1) amax/(1017 m·s–2) τrise/ps
    22.50 1.7 0.50
    33.75 1.9 0.38
    45.00 3.5 0.30
    56.25 5.3 0.24
    67.50 7.5 0.20
    78.75 12.0 0.17
    下载: 导出CSV
  • [1] VELIKOVICH A L, DIMONTE G. Nonlinear perturbation theory of the incompressible Richtmyer-Meshkovinstability [J]. Physical Review Letters, 1996, 76(17): 3112. doi: 10.1103/PhysRevLett.76.3112
    [2] NAKAI S, TAKABE H. Principles of inertial confinement fusion-physics of implosion and the concept of inertial fusion energy [J]. Reports on Progress in Physics, 1996, 59(9): 1071. doi: 10.1088/0034-4885/59/9/002
    [3] ANDREWS M J. Workshop: research needs for material mixing at extremes: LA-UR-11-02565 [R]. Los Alamos: Los Alamos National Laboratory, 2011.
    [4] GRAZIANI F R, BATISTA V S, BENEDICT L X, et al. Large-scale molecular dynamics simulations of dense plasmas: the Cimarron Project [J]. High Energy Density Physics, 2012, 8(1): 105–131. doi: 10.1016/j.hedp.2011.06.010
    [5] ZHAKHOVSKII V, NISHIHARA K, ABE M. Molecular dynamics simulation on stability of converging shocks [C]//TANAKA K A, MEYERHOFER D D, MEYER-TER-VEHN J. Proceedings of the 2nd International Conference on Inertial Fusion Science and Applications. Elsevier, 2002: 106-109.
    [6] KADAU K, GERMANN T C, HADJICONSTANTINOU N G, et al. Nanohydrodynamics simulations: an atomistic view of the Rayleigh–Taylor instability [J]. Proceedings of the National Academy of Sciences, 2004, 101(16): 5851–5855. doi: 10.1073/pnas.0401228101
    [7] ZYBIN S V, ZHAKHOVSKII V V, BRINGA E M, et al. Molecular dynamics simulations of the Richtmyer-Meshkov instability in shock loaded solids [J]. AIP Conference Proceedings, 2006, 845(1): 437–441.
    [8] CHERNE F J, DIMONTE G, GERMANN T C. Richtmyer-Meshkov instability examinedwith large-scalemolecular dynamics simulations [J]. AIP Conference Proceedings, 2012, 1426(1): 1307–1310.
    [9] KOHANOFF J, HANSEN J P. Ab initio molecular dynamics of metallic hydrogen at high densities [J]. Physical Review Letters, 1995, 74(5): 626. doi: 10.1103/PhysRevLett.74.626
    [10] KOHANOFF J, HANSEN J P. Statistical properties of the dense hydrogen plasma: an ab initio molecular dynamics investigation [J]. Physical Review E, 1996, 54(1): 768. doi: 10.1103/PhysRevE.54.768
    [11] KRESSE G, HAFNER J. Ab initio molecular dynamics for liquid metals [J]. Physical Review B, 1993, 47(1): 558. doi: 10.1103/PhysRevB.47.558
    [12] COLLINS L, KWON I, KRESS J, et al. Quantum molecular dynamics simulations of hot, dense hydrogen [J]. Physical Review E, 1995, 52(6): 6202. doi: 10.1103/PhysRevE.52.6202
    [13] 龚新高. 高温及高压下液体镓的结构——第一性原理分子动力学方法研究 [J]. 物理学报, 1995, 44(6): 885–896

    GONG X G. Structural properties of liquid gallium at high temperature and high pressure: an ab initio molecular dynamics study [J]. Acta Physica Sinica, 1995, 44(6): 885–896
    [14] 何以广. 氢和氦高压物性的第一原理分子动力学研究及实验探索 [D]. 北京: 清华大学, 2010.
    [15] 张玉娟. 温稠密乙烷等流体物性的第一性原理分子动力学研究 [D]. 北京: 中国工程物理研究院, 2013.
    [16] 刘海, 李启楷, 何远航. 高速冲击压缩梯恩梯的分子动力学模拟 [J]. 力学学报, 2015, 47(1): 174–179

    LIU H, LI Q K, HE Y H. Molecular dynamics simulations of high velocity shock compressed TNT [J]. Chinese Journal of Theoretical and Applied Mechanics, 2015, 47(1): 174–179
    [17] 宋海峰, 刘海风. 金属铍热力学性质的理论研究 [J]. 物理学报, 2007, 56(5): 2833–2837 doi: 10.3321/j.issn:1000-3290.2007.05.060

    SONG H F, LIU H F. Theoretical study of thermodynamic properties of metal Be [J]. Acta Physica Sinica, 2007, 56(5): 2833–2837 doi: 10.3321/j.issn:1000-3290.2007.05.060
    [18] 王聪, 贺贤土, 张平. 温稠密物质的量子及半经典分子动力学研究 [C]//中国力学大会2013论文摘要集. 西安, 2013.
    [19] 戴佳钰, 康冬冬, 侯永, 等. 高温稠密物质的多尺度动力学研究 [C]//中国力学大会2013论文摘要集. 西安, 2013.
    [20] SU J T, GODDARD III W A. Excited electron dynamics modeling of warm dense matter [J]. Physical Review Letters, 2007, 99(18): 185003. doi: 10.1103/PhysRevLett.99.185003
    [21] SU J T, GODDARD III W A. The dynamics of highly excited electronic systems: applications of the electron force field [J]. The Journal of Chemical Physics, 2009, 131(24): 244501. doi: 10.1063/1.3272671
    [22] JARAMILLO-BOTERO A, SU J, QI A, et al. Large-scale, long-term nonadiabatic electron molecular dynamics for describing material properties and phenomena in extreme environments [J]. Journal of Computational Chemistry, 2011, 32(3): 497–512. doi: 10.1002/jcc.21637
    [23] 王维荣. 极端条件下单模界面不稳定性的分子动力学研究 [D]. 合肥: 中国科学技术大学, 2017.
    [24] HUANG S, WANG W, LUO X. Molecular-dynamics simulation of Richtmyer-Meshkov instability on a Li-H2 interface at extreme compressing conditions [J]. Physics of Plasmas, 2018, 25(6): 062705. doi: 10.1063/1.5018845
    [25] DIMONTE G, REMINGTON B. Richtmyer-Meshkov experiments on the Nova laser at high compression [J]. Physical Review Letters, 1993, 70(12): 1806. doi: 10.1103/PhysRevLett.70.1806
    [26] DIMONTE G, FRERKING C E, SCHNEIDER M, et al. Richtmyer–Meshkov instability with strong radiatively driven shocks [J]. Physics of Plasmas, 1996, 3(2): 614–630. doi: 10.1063/1.871889
  • 加载中
图(6) / 表(2)
计量
  • 文章访问数:  6851
  • HTML全文浏览量:  3012
  • PDF下载量:  29
出版历程
  • 收稿日期:  2018-07-31
  • 修回日期:  2018-09-04

目录

    /

    返回文章
    返回