Microscale Self-Similarity Phenomenon of RM Instability on the Copper/Helium Interface with Molecular Dynamics Simulation
-
摘要: 极端冲击加载条件下的RM (Richtmyer-Meshkov)不稳定性在惯性约束核聚变领域有重要的学术价值和工程意义。宏观动力学方法受限于极端条件下的模型和参数准确性而难以直接应用,微观分子动力学方法则受限于计算量而难以直接模拟宏观尺度现象。为了解RM不稳定性微观与宏观规律之间的联系,采用基于嵌入原子多体势(EAM)的分子动力学方法模拟铜-氦微观尺度界面在极端冲击加载条件下(活塞冲击加载速度6~15 km/s)的RM不稳定性现象,对比文献提供的近似条件下宏观模拟结果发现,演化过程在唯象上完全相似。进一步比较了不同尺度(7.3~145.0 nm)、不同冲击加载速度(11.7~20.6 km/s)、不同初始界面扰动(扰动振幅与波长之比0.20~0.05)条件下振幅发展规律,发现在相同冲击动力条件和边界条件下,RM不稳定性的振幅增长规律在计算尺度范围内完全自相似,主要参数的变化特征符合理论预测。尽管理论模型因简化而存在一定偏差,但是微观模拟获得的振幅增长规律与宏观现象有相似的变化特征。Abstract: The Richtmyer-Meshkov instability (RMI) under extreme shock conditions has important academic and engineering significance in the field of inertial confinement fusion (ICF). Present macroscopic hydrodynamic methods are difficult to be directly applied to RMI in extreme conditions due to the lack of proper models and parameters in such states, while the microscopic results obtained by molecular dynamics (MD) are also difficult to be applied directly in macroscopic scale simulation due to computational cost. To understand the connection between macroscopic and microscopic RMI, the RMI evolution on copper-helium interface at different micro scales under different piston shock conditions (6–15 km/s) was simulated by the molecular dynamics method based on embedded-atom potential (EAM) models. Firstly, the RMI evolution obtained by MD was compared with available literature macroscopic results under similar conditions. Phenomenological similarity results between macroscopic and microscopic RMI is confirmed. The evolution histories of initial sinusoidal disturbance (amplitude/wave length ratio 0.20–0.05) at different incident shock wave speeds (11.7–20.6 km/s) and different scales (7.3–145.0 nm) from RMI simulations were further compared and analyzed. It is found that all amplitude evolution curves behave with self-similarity under same shock and boundary conditions, all main parameters vary in accordance with prediction of theoretical model. Although there exists some extent of discrepancy, similar amplitude evolution characteristics results are obtained by microscopic and macroscopic simulations.
-
表 1 RMI不同尺度计算结果的参数统计
Table 1. Computed statistical results of RMI parameters at different scales
λ/nm Wi/(km·s–1) δWi/% Wt/(km·s–1) δWt/% U/(km·s–1) δU/% V0/(km·s–1) δV0/% A δA/% 7.3 11.5 0.3 18.1 1.4 11.5 1.8 3.16 2.3 –0.83 1.1 14.5 11.7 2.1 17.6 1.3 11.9 1.5 3.19 1.4 –0.83 1.1 29.0 11.5 0.3 18.2 2.0 11.7 0.1 3.23 0.1 –0.84 0 72.5 11.4 0.5 17.7 0.7 12.1 3.2 3.28 1.3 –0.85 1.1 145.0 11.2 2.2 17.6 1.3 11.4 2.7 3.32 2.5 –0.85 1.1 表 2 不同冲击加载速度下RMI参数
Table 2. Parameters of RMI under different Vp
Vp/(km·s–1) Wi/(km·s–1) Wt/(km·s–1) U/(km·s–1) V0/(km·s–1) A 6 11.7 17.6 11.9 3.22 –0.83 9 14.2 24.4 16.6 3.43 –0.84 12 16.5 33.5 21.9 3.57 –0.85 15 20.6 41.7 28.9 3.74 –0.83 表 3 不同初始振幅波长比条件下RMI参数
Table 3. Parameters of RMI with different initial amplitude/wave length ratio
a Wi/(km·s–1) Wt/(km·s–1) U/(km·s–1) V0/(km·s–1) A 0.20 11.7 17.6 11.9 3.22 –0.83 0.10 11.7 17.8 11.8 2.00 –0.85 0.05 11.6 18.0 11.6 1.03 –0.84 -
[1] RICHTMYER R D. Taylor instability in shock acceleration of compressible fluids [J]. Communications on Pure and Applied Mathematics, 1960, 13(2): 297–319. doi: 10.1002/(ISSN)1097-0312 [2] MESHKOV E E. Instability of the interface of two gases accelerated by a shock wave [J]. Fluid Dynamics, 1969, 4(5): 101–104. [3] ANDREWS M J. Workshop: research needs for material mixing at extremes: LA-UR-11-02565 [R]. Los Alamos: Los Alamos National Laboratory, 2011. [4] GRAZIANI F R, BATISTA V S, BENEDICT L X, et al. Large-scale molecular dynamics simulations of dense plasmas: the Cimarron Project [J]. High Energy Density Physics, 2012, 8(1): 105–131. doi: 10.1016/j.hedp.2011.06.010 [5] ZHAKHOVSKII V, NISHIHARA K, ABE M. Molecular dynamics simulation on stability of converging shocks [C]// TANAKA K A, MEYERHOFER D D, MEYER-TER-VEHN J. Proceedings of the 2nd International Conference on Inertial Fusion Science and Applications. Paris: Elsevier, 2002: 106-109. [6] KADAU K, GERMANN T C, HADJICONSTANTINOU N G, et al. Nanohydrodynamics simulations: an atomistic view of the Rayleigh-Taylor instability [J]. Proceedings of the National Academy of Sciences, 2004, 101(16): 5851–5855. doi: 10.1073/pnas.0401228101 [7] ZYBIN S V, ZHAKHOVSKII V V, BRINGA E M, et al. Molecular dynamics simulations of the Richtmyer-Meshkov instability in shock loaded solids [J]. AIP Conference Proceedings, 2006, 845(1): 437–441. [8] CHERNE F J, DIMONTE G, GERMANN T C. Richtmyer-Meschov instability examined with large-scale molecular dynamic simulations: LA-UR-11-04503 [R]. Los Alamos: Los Alamos National Laboratory, 2011. [9] 龚新高. 高温及高压下液体镓的结构——第一性原理分子动力学方法研究 [J]. 物理学报, 1995, 44(6): 885–896GONG X G. Structural properties of liquid gallium at high temperature and high pressure—an ab initio molecular dynamics study [J]. Acta Physica Sinica, 1995, 44(6): 885–896 [10] 何以广. 氢和氦高压物性的第一原理分子动力学研究及实验探索 [D]. 北京: 清华大学, 2010. [11] 张玉娟. 温稠密乙烷等流体物性的第一性原理分子动力学研究 [D]. 北京: 中国工程物理研究院, 2013. [12] 刘海, 李启楷, 何远航. 高速冲击压缩梯恩梯的分子动力学模拟 [J]. 力学学报, 2015, 47(1): 174–179LIU H, LI Q K, HE Y H. Molecular dynamics simulations of high velocity shock compressed TNT [J]. Chinese Journal of Theoretical and Applied Mechanics, 2015, 47(1): 174–179 [13] 王裴, 秦承森, 张树道, 等. SPH方法对金属表面微射流的数值模拟 [J]. 高压物理学报, 2004, 18(2): 149–156 doi: 10.3969/j.issn.1000-5773.2004.02.010WANG P, QIN C S, ZHANG S D, et al. Simulated microjet from free surface of aluminum using smoothed particle hydrodynamics [J]. Chinese Journal of High Pressure Physics, 2004, 18(2): 149–156 doi: 10.3969/j.issn.1000-5773.2004.02.010 [14] HUANG S, WANG W, LUO X. Molecular-dynamics simulation of Richtmyer-Meshkov instability on a Li-H2 interface at extreme compressing conditions [J]. Physics of Plasmas, 2018, 25(6): 062705. doi: 10.1063/1.5018845 [15] DAW M S, BASKES M I. Embedded-atom method: derivation and application to impurities, surfaces, and other defects in metals [J]. Physical Review B, 1984, 29(12): 6443. doi: 10.1103/PhysRevB.29.6443 [16] ACKLAND G J, BACON D J, CALDER A F, et al. Computer simulation of point defect properties in dilute Fe-Cu alloy using a many-body interatomic potential [J]. Philosophical Magazine A, 1997, 75(3): 713–732. doi: 10.1080/01418619708207198 [17] GERMANN T C, DIMONTE G, HAMMERBERG J E, et al. Large-scale molecular dynamics simulations of particulate ejection and Richtmyer-Meshkov instability development in shocked copper [C]// DYMAT 2009, EDP Sciences, 2009: 1499-1505. [18] RIKANATI A, ORON D, SADOT O, et al. High initial amplitude and high Mach number effects on the evolution of the single-mode Richtmyer-Meshkov instability [J]. Physical Review E, 2003, 67(2): 026307. doi: 10.1103/PhysRevE.67.026307 [19] DIMONTE G, RAMAPRABHU P. Simulations and model of the nonlinear Richtmyer-Meshkov instability [J]. Physics of Fluids, 2010, 22(1): 014104. doi: 10.1063/1.3276269 [20] HOLMES R L, DIMONTE G, FRYXELL B, et al. Richtmyer-Meshkov instability growth: experiment, simulation and theory [J]. Journal of Fluid Mechanics, 1999, 389: 55–79. doi: 10.1017/S0022112099004838