微观尺度下金属/气体界面RM不稳定性自相似现象的分子动力学模拟

丁雨 黄生洪

丁雨, 黄生洪. 微观尺度下金属/气体界面RM不稳定性自相似现象的分子动力学模拟[J]. 高压物理学报, 2019, 33(2): 022301. doi: 10.11858/gywlxb.20180606
引用本文: 丁雨, 黄生洪. 微观尺度下金属/气体界面RM不稳定性自相似现象的分子动力学模拟[J]. 高压物理学报, 2019, 33(2): 022301. doi: 10.11858/gywlxb.20180606
DING Yu, HUANG Shenghong. Microscale Self-Similarity Phenomenon of RM Instability on the Copper/Helium Interface with Molecular Dynamics Simulation[J]. Chinese Journal of High Pressure Physics, 2019, 33(2): 022301. doi: 10.11858/gywlxb.20180606
Citation: DING Yu, HUANG Shenghong. Microscale Self-Similarity Phenomenon of RM Instability on the Copper/Helium Interface with Molecular Dynamics Simulation[J]. Chinese Journal of High Pressure Physics, 2019, 33(2): 022301. doi: 10.11858/gywlxb.20180606

微观尺度下金属/气体界面RM不稳定性自相似现象的分子动力学模拟

doi: 10.11858/gywlxb.20180606
基金项目: 国家自然科学基金(U1530125);挑战专题(TZ2016001)
详细信息
    作者简介:

    丁 雨(1995-),男,硕士研究生,主要从事极端冲击问题的分子动力学模拟研究. E-mail: dy123@mail.ustc.edu.cn

    通讯作者:

    黄生洪(1974-),男,博士,副教授,主要从事极端冲击动力学研究. E-mail: hshnpu@ustc.edu.cn

  • 中图分类号: O354; O357

Microscale Self-Similarity Phenomenon of RM Instability on the Copper/Helium Interface with Molecular Dynamics Simulation

  • 摘要: 极端冲击加载条件下的RM (Richtmyer-Meshkov)不稳定性在惯性约束核聚变领域有重要的学术价值和工程意义。宏观动力学方法受限于极端条件下的模型和参数准确性而难以直接应用,微观分子动力学方法则受限于计算量而难以直接模拟宏观尺度现象。为了解RM不稳定性微观与宏观规律之间的联系,采用基于嵌入原子多体势(EAM)的分子动力学方法模拟铜-氦微观尺度界面在极端冲击加载条件下(活塞冲击加载速度6~15 km/s)的RM不稳定性现象,对比文献提供的近似条件下宏观模拟结果发现,演化过程在唯象上完全相似。进一步比较了不同尺度(7.3~145.0 nm)、不同冲击加载速度(11.7~20.6 km/s)、不同初始界面扰动(扰动振幅与波长之比0.20~0.05)条件下振幅发展规律,发现在相同冲击动力条件和边界条件下,RM不稳定性的振幅增长规律在计算尺度范围内完全自相似,主要参数的变化特征符合理论预测。尽管理论模型因简化而存在一定偏差,但是微观模拟获得的振幅增长规律与宏观现象有相似的变化特征。

     

  • 图  初始Cu-He正弦单模界面模型及参数定义

    Figure  1.  Initial characteristic parameters of single mode sinusoidal Cu-He interface model

    图  宏观流体动力学模拟的单模RMI(左)与MD模拟的微观结果(右)的唯象相似性

    Figure  2.  Macroscopic hydrodynamics and microscopic molecular dynamics simulations of single mode RMI (left) with similar phenomenological results (right)

    图  气泡/尖钉位置-时间图像

    Figure  3.  Displacement-time histories of bubble/spike position

    图  微观RMI现象典型时刻的密度分布与原子分布

    Figure  4.  Density contours and atom arrangements map of RMI simulations by MD at typical time constants

    图  RMI振幅-时间演化图像

    Figure  5.  Time histories of RMI amplitude evolution

    图  不同尺度模型的无量纲振幅-时间曲线

    Figure  6.  Non-dimensional amplitude evolution histories of different scale simulations

    图  不同尺度、相同无量纲时刻的密度等值图

    Figure  7.  Density contours of different scale simulations with the same non-dimensional time constants

    图  不同冲击加载速度下的无量纲振幅-时间曲线

    Figure  8.  Non-dimensional time histories of amplitude evolution under different Vp

    图  不同初始振幅波长比条件下的无量纲振幅-时间曲线

    Figure  9.  Non-dimensional time histories of amplitude evolution with different initial amplitude/wave length ratio

    表  1  RMI不同尺度计算结果的参数统计

    Table  1.   Computed statistical results of RMI parameters at different scales

    λ/nmWi/(km·s–1)δWi/%Wt/(km·s–1)δWt/%U/(km·s–1)δU/%V0/(km·s–1)δV0/%AδA/%
    7.311.50.318.11.411.51.83.162.3–0.831.1
    14.511.72.117.61.311.91.53.191.4–0.831.1
    29.011.50.318.22.011.70.13.230.1–0.840
    72.511.40.517.70.712.13.23.281.3–0.851.1
    145.011.22.217.61.311.42.73.322.5–0.851.1
    下载: 导出CSV

    表  2  不同冲击加载速度下RMI参数

    Table  2.   Parameters of RMI under different Vp

    Vp/(km·s–1)Wi/(km·s–1)Wt/(km·s–1)U/(km·s–1)V0/(km·s–1)A
    611.717.611.93.22–0.83
    914.224.416.63.43–0.84
    1216.533.521.93.57–0.85
    1520.641.728.93.74–0.83
    下载: 导出CSV

    表  3  不同初始振幅波长比条件下RMI参数

    Table  3.   Parameters of RMI with different initial amplitude/wave length ratio

    aWi/(km·s–1)Wt/(km·s–1)U/(km·s–1)V0/(km·s–1)A
    0.2011.717.611.93.22–0.83
    0.1011.717.811.82.00–0.85
    0.0511.618.011.61.03–0.84
    下载: 导出CSV
  • [1] RICHTMYER R D. Taylor instability in shock acceleration of compressible fluids [J]. Communications on Pure and Applied Mathematics, 1960, 13(2): 297–319. doi: 10.1002/(ISSN)1097-0312
    [2] MESHKOV E E. Instability of the interface of two gases accelerated by a shock wave [J]. Fluid Dynamics, 1969, 4(5): 101–104.
    [3] ANDREWS M J. Workshop: research needs for material mixing at extremes: LA-UR-11-02565 [R]. Los Alamos: Los Alamos National Laboratory, 2011.
    [4] GRAZIANI F R, BATISTA V S, BENEDICT L X, et al. Large-scale molecular dynamics simulations of dense plasmas: the Cimarron Project [J]. High Energy Density Physics, 2012, 8(1): 105–131. doi: 10.1016/j.hedp.2011.06.010
    [5] ZHAKHOVSKII V, NISHIHARA K, ABE M. Molecular dynamics simulation on stability of converging shocks [C]// TANAKA K A, MEYERHOFER D D, MEYER-TER-VEHN J. Proceedings of the 2nd International Conference on Inertial Fusion Science and Applications. Paris: Elsevier, 2002: 106-109.
    [6] KADAU K, GERMANN T C, HADJICONSTANTINOU N G, et al. Nanohydrodynamics simulations: an atomistic view of the Rayleigh-Taylor instability [J]. Proceedings of the National Academy of Sciences, 2004, 101(16): 5851–5855. doi: 10.1073/pnas.0401228101
    [7] ZYBIN S V, ZHAKHOVSKII V V, BRINGA E M, et al. Molecular dynamics simulations of the Richtmyer-Meshkov instability in shock loaded solids [J]. AIP Conference Proceedings, 2006, 845(1): 437–441.
    [8] CHERNE F J, DIMONTE G, GERMANN T C. Richtmyer-Meschov instability examined with large-scale molecular dynamic simulations: LA-UR-11-04503 [R]. Los Alamos: Los Alamos National Laboratory, 2011.
    [9] 龚新高. 高温及高压下液体镓的结构——第一性原理分子动力学方法研究 [J]. 物理学报, 1995, 44(6): 885–896

    GONG X G. Structural properties of liquid gallium at high temperature and high pressure—an ab initio molecular dynamics study [J]. Acta Physica Sinica, 1995, 44(6): 885–896
    [10] 何以广. 氢和氦高压物性的第一原理分子动力学研究及实验探索 [D]. 北京: 清华大学, 2010.
    [11] 张玉娟. 温稠密乙烷等流体物性的第一性原理分子动力学研究 [D]. 北京: 中国工程物理研究院, 2013.
    [12] 刘海, 李启楷, 何远航. 高速冲击压缩梯恩梯的分子动力学模拟 [J]. 力学学报, 2015, 47(1): 174–179

    LIU H, LI Q K, HE Y H. Molecular dynamics simulations of high velocity shock compressed TNT [J]. Chinese Journal of Theoretical and Applied Mechanics, 2015, 47(1): 174–179
    [13] 王裴, 秦承森, 张树道, 等. SPH方法对金属表面微射流的数值模拟 [J]. 高压物理学报, 2004, 18(2): 149–156 doi: 10.3969/j.issn.1000-5773.2004.02.010

    WANG P, QIN C S, ZHANG S D, et al. Simulated microjet from free surface of aluminum using smoothed particle hydrodynamics [J]. Chinese Journal of High Pressure Physics, 2004, 18(2): 149–156 doi: 10.3969/j.issn.1000-5773.2004.02.010
    [14] HUANG S, WANG W, LUO X. Molecular-dynamics simulation of Richtmyer-Meshkov instability on a Li-H2 interface at extreme compressing conditions [J]. Physics of Plasmas, 2018, 25(6): 062705. doi: 10.1063/1.5018845
    [15] DAW M S, BASKES M I. Embedded-atom method: derivation and application to impurities, surfaces, and other defects in metals [J]. Physical Review B, 1984, 29(12): 6443. doi: 10.1103/PhysRevB.29.6443
    [16] ACKLAND G J, BACON D J, CALDER A F, et al. Computer simulation of point defect properties in dilute Fe-Cu alloy using a many-body interatomic potential [J]. Philosophical Magazine A, 1997, 75(3): 713–732. doi: 10.1080/01418619708207198
    [17] GERMANN T C, DIMONTE G, HAMMERBERG J E, et al. Large-scale molecular dynamics simulations of particulate ejection and Richtmyer-Meshkov instability development in shocked copper [C]// DYMAT 2009, EDP Sciences, 2009: 1499-1505.
    [18] RIKANATI A, ORON D, SADOT O, et al. High initial amplitude and high Mach number effects on the evolution of the single-mode Richtmyer-Meshkov instability [J]. Physical Review E, 2003, 67(2): 026307. doi: 10.1103/PhysRevE.67.026307
    [19] DIMONTE G, RAMAPRABHU P. Simulations and model of the nonlinear Richtmyer-Meshkov instability [J]. Physics of Fluids, 2010, 22(1): 014104. doi: 10.1063/1.3276269
    [20] HOLMES R L, DIMONTE G, FRYXELL B, et al. Richtmyer-Meshkov instability growth: experiment, simulation and theory [J]. Journal of Fluid Mechanics, 1999, 389: 55–79. doi: 10.1017/S0022112099004838
  • 加载中
图(9) / 表(3)
计量
  • 文章访问数:  7771
  • HTML全文浏览量:  4354
  • PDF下载量:  31
出版历程
  • 收稿日期:  2018-07-31
  • 修回日期:  2018-09-06

目录

    /

    返回文章
    返回