Experimental and Numerical Study of Shock Initiation of Covered TNT by Near-Field Shock Wave
-
摘要: 为研究近场强冲击波对屏蔽装药的冲击引爆效应,通过试验和LS-DYNA3D非线性有限元计算程序对屏蔽压装TNT的冲击引爆进行研究,得到了接触爆炸时压装TNT被引爆的临界屏蔽板厚度和非接触爆炸时屏蔽压装TNT的殉爆距离,分析了非接触爆炸时屏蔽板厚度对殉爆距离的影响,并通过非线性最小二乘法拟合得到屏蔽板厚度与殉爆距离的函数关系。结果表明:数值计算结果与试验结果基本一致;接触爆炸时临界起爆的屏蔽板厚度在20~23 mm之间;屏蔽板采用3 mm厚的45钢时,非接触爆炸作用下压装TNT的殉爆距离在12~15 mm之间;非接触爆炸时殉爆距离随着屏蔽板厚度的增加而减小,当无屏蔽板时,压装TNT的殉爆距离为79 mm,当屏蔽板厚度从1 mm加大到9 mm时,殉爆距离从51 mm减为1.5 mm,被发装药的屏蔽板对冲击波有显著的防护作用。Abstract: In this study we analyzed the shock initiation process of covered TNT using experiments and LS-DYNA3D to study the damage effect of the near-field strong shock wave on the covered charge. We obtained the critical thickness of the covered plate for detonating TNT during contact explosion and the sympathetic detonation distance of the covered TNT during non-contact explosion and the relation between the covered plate thickness and the distance of the explosion using the non-linear least square method. The results show that the numerical simulation results accord well with the experimental results. The sympathetic detonation distance of the covered-pressed TNT in non-contact explosion ranges from 12-15 mm when the thickness of the 45 steel covered plate is 3 mm. The critical thickness of the covered plate is between 20 and 23 mm for the pressed TNT ignited by contact explosion. The sympathetic detonation distance of the non-contact explosion decreases as the covered plate thickness increases. Without a covered plate, the sympathetic detonation distance is 79 mm. When the thickness of the covered plate increases from 1 mm to 5 mm, the sympathetic detonation distance reduces from 51 mm to 1.5 mm. The thickness of the covered plate is of great importance for the protection against shock waves.
-
Material ρ0/(g·cm-3) D/(m·s-1) pCJ/GPa A/GPa B/GPa R1 R2 ω E/(109 J·m-3) TNT 1.60 6 812 18.56 370 3.23 4.15 0.95 0.3 7 Material ρ0/(g·cm-3) G/GPa A1/GPa B1/GPa C1 n m Tm/K Tr/K 45 steel 7.85 82.3 0.507 0.320 0.280 0.064 1.06 1 765 298 Q235 steel 7.83 80.0 0.235 0.250 0.022 1.000 0.36 1 793 294 I/μs–1 G1/( Pa–3·s–1) G2/( Pa–3·s–1) a b c d e g x y z 8×108 4.20×10–25 2.60×10–25 0.111 0.667 0.667 0.667 0.333 1 6 3 3 表 3 屏蔽装药冲击引爆试验结果
Table 3. Results of shock initiation of covered charge
Explosion type Test No. d/mm h/mm Explosion situation of acceptor charge Pit depth/mm Contact explosion 1 20 Exploded 4.22 2 26 Unexploded 0 3 23 Unexploded 0 Non-contact explosion 4 3 10 Exploded 4.20 5 3 19 Unexploded 0 6 3 15 Unexploded 0 7 3 12 Part of the explosion 2.20 表 4 屏蔽装药冲击引爆试验和仿真计算结果
Table 4. Test and simulation results of shock initiation of covered charge
Explosion type Test results Simulation results d/mm Explosion situation d/mm Explosion situation Contact explosion 20 Exploded 24.0 Exploded 23 Unexploded 24.5 Unexploded Explosion type Test results Simulation results h/mm Explosion situation h/mm Explosion situation Non-contact explosion 12 Partial explosion 13.0 Exploded 15 Unexploded 13.5 Unexploded -
[1] 徐松林, 阳世清, 李玉龙. 弹药与爆炸品的安全标准体系 [J]. 安全与环境工程, 2012, 19(5): 85–89 doi: 10.3969/j.issn.1671-1556.2012.05.021XU S L, YANG S Q, LI Y L. Safety standard system of ammunitions and explosives [J]. Safety and Environmental Engineering, 2012, 19(5): 85–89 doi: 10.3969/j.issn.1671-1556.2012.05.021 [2] ROSENBERG Z, DEKEL E. Terminal ballistics [M]. Berlin: Springer, 2012. [3] 陈卫东, 张忠, 刘家良. 破片对屏蔽炸药冲击起爆的数值模拟和分析 [J]. 兵工学报, 2009, 30(9): 1187–1191 doi: 10.3321/j.issn:1000-1093.2009.09.007CHEN W D, ZHANG Z, LIU J L. Numerical simulation and analysis of shock initiation of shielded explosive impacted by fragments [J]. Acta Armamentarii, 2009, 30(9): 1187–1191 doi: 10.3321/j.issn:1000-1093.2009.09.007 [4] 童宗保, 王金相, 彭楚才, 等. 预制破片对屏蔽炸药冲击引爆研究 [J]. 科学技术与工程, 2014, 14(7): 173–177 doi: 10.3969/j.issn.1671-1815.2014.07.038TONG Z B, WANG J X, PENG C C, et al. Study on the initiation of shielded explosive impacted by prefabricated fragment [J]. Science Technology and Engineering, 2014, 14(7): 173–177 doi: 10.3969/j.issn.1671-1815.2014.07.038 [5] 杨正才, 廖昕, 李晓刚, 等. 某隔板起爆器冲击起爆过程的数值模拟与实验研究 [J]. 含能材料, 2011, 19(2): 221–225 doi: 10.3969/j.issn.1006-9941.2011.02.022YANG Z C, LIAO X, LI X G, et al. Numerical simulation and experimental investigation for shock initiation of bulkhead initiator [J]. Chinese Journal of Energetic Materials, 2011, 19(2): 221–225 doi: 10.3969/j.issn.1006-9941.2011.02.022 [6] 周杰, 何勇, 何源, 等. 含能毁伤元冲击引爆模拟战斗部试验研究 [J]. 含能材料, 2016, 24(11): 1048–1056 doi: 10.11943/j.issn.1006-9941.2016.11.003ZHOU J, HE Y, HE Y, et al. Experimental study on shock initiation of simulative warhead by energetic kill element [J]. Chinese Journal of Energetic Materials, 2016, 24(11): 1048–1056 doi: 10.11943/j.issn.1006-9941.2016.11.003 [7] WALKER F E, WASLEY R J. Critical energy shock initiation of heteropterous explosive [C]//Explosive Pyrotechnics, 1968. [8] LU J P, LI J, KENNEDY D L. Simulation of sympathetic reaction rests for PBXN-109 [C]//Proceedings of 13th Symposium (International) on Detonation. New York, USA, 2006: 1338–1349. [9] 王晨, 伍俊英, 陈朗, 等. 壳装炸药殉爆实验和数值模拟 [J]. 爆炸与冲击, 2010, 30(2): 152–158 doi: 10.11883/1001-1455(2010)02-0152-07WANG C, WU J Y, CHEN L, et al. Experiments and numerical simulations of sympathetic detonation of explosives in shell [J]. Explosion and Shock Waves, 2010, 30(2): 152–158 doi: 10.11883/1001-1455(2010)02-0152-07 [10] 时党勇, 李裕春, 张胜民. 基于ANSYS/LS-DYNA8.1进行显示动力分析 [M]. 北京: 清华大学出版社, 2005. [11] 陈刚, 陈忠富, 陶俊林, 等. 45钢的Johnson-Cook失效模型 [C]//中国力学学会学术大会, 2005. [12] 张磊. Q235钢拉伸性能的有限元仿真与试验 [D]. 长春: 吉林大学, 2012. [13] 蒋国平. 非均质凝聚炸药二维冲击起爆实验与Lagrange分析研究 [D]. 长沙: 湖南大学, 2005. [14] 北京工业学院八系. 爆炸及其作用(上) [M]. 北京: 国防工业出版社, 1982.