近场爆炸冲击波对屏蔽压装TNT的冲击引爆试验和仿真

陈兴旺 王金相 唐奎 陈日明 周莲 郝春杰

陈兴旺, 王金相, 唐奎, 陈日明, 周莲, 郝春杰. 近场爆炸冲击波对屏蔽压装TNT的冲击引爆试验和仿真[J]. 高压物理学报, 2019, 33(1): 015101. doi: 10.11858/gywlxb.20180604
引用本文: 陈兴旺, 王金相, 唐奎, 陈日明, 周莲, 郝春杰. 近场爆炸冲击波对屏蔽压装TNT的冲击引爆试验和仿真[J]. 高压物理学报, 2019, 33(1): 015101. doi: 10.11858/gywlxb.20180604
CHEN Xingwang, WANG Jinxiang, TANG Kui, CHEN Riming, ZHOU Lian, HAO Chunjie. Experimental and Numerical Study of Shock Initiation of Covered TNT by Near-Field Shock Wave[J]. Chinese Journal of High Pressure Physics, 2019, 33(1): 015101. doi: 10.11858/gywlxb.20180604
Citation: CHEN Xingwang, WANG Jinxiang, TANG Kui, CHEN Riming, ZHOU Lian, HAO Chunjie. Experimental and Numerical Study of Shock Initiation of Covered TNT by Near-Field Shock Wave[J]. Chinese Journal of High Pressure Physics, 2019, 33(1): 015101. doi: 10.11858/gywlxb.20180604

近场爆炸冲击波对屏蔽压装TNT的冲击引爆试验和仿真

doi: 10.11858/gywlxb.20180604
基金项目: 国家自然科学基金(11672138)
详细信息
    作者简介:

    陈兴旺(1994-),男,博士研究生,主要从事屏蔽装药结构安全性研究. E-mail:m18851199809@163.com

    通讯作者:

    王金相(1978-),男,研究员,博士生导师,主要从事爆炸与冲击动力学研究. E-mail: wjx@njust.edu.cn

  • 中图分类号: O383.1

Experimental and Numerical Study of Shock Initiation of Covered TNT by Near-Field Shock Wave

  • 摘要: 为研究近场强冲击波对屏蔽装药的冲击引爆效应,通过试验和LS-DYNA3D非线性有限元计算程序对屏蔽压装TNT的冲击引爆进行研究,得到了接触爆炸时压装TNT被引爆的临界屏蔽板厚度和非接触爆炸时屏蔽压装TNT的殉爆距离,分析了非接触爆炸时屏蔽板厚度对殉爆距离的影响,并通过非线性最小二乘法拟合得到屏蔽板厚度与殉爆距离的函数关系。结果表明:数值计算结果与试验结果基本一致;接触爆炸时临界起爆的屏蔽板厚度在20~23 mm之间;屏蔽板采用3 mm厚的45钢时,非接触爆炸作用下压装TNT的殉爆距离在12~15 mm之间;非接触爆炸时殉爆距离随着屏蔽板厚度的增加而减小,当无屏蔽板时,压装TNT的殉爆距离为79 mm,当屏蔽板厚度从1 mm加大到9 mm时,殉爆距离从51 mm减为1.5 mm,被发装药的屏蔽板对冲击波有显著的防护作用。

     

  • 图  屏蔽装药冲击引爆数值计算模型图

    Figure  1.  Numerical calculation model of covered charge explosive detonation

    图  屏蔽装药冲击引爆实物照片

    Figure  2.  Photo of shock initiation of covered charge

    图  套筒高度为10 mm时不同时刻起爆装置的高速摄影照片

    Figure  3.  High speed camera photos of experimental setup with 10 mm PPR sleeve at different time

    图  套筒高度为15 mm时不同时刻起爆装置的高速摄影照片

    Figure  4.  High speed camera photos of experimental setup with 15 mm PPR sleeve at different time

    图  接触爆炸试验后被发装药的见证板变形

    Figure  5.  Deformation of the witness plates under the acceptor with contact explosion

    图  非接触爆炸试验后被发装药的见证板变形

    Figure  6.  Deformation of the witness plates under the acceptor with non-contact explosion

    图  被发装药爆炸后见证板变形的数值模拟结果

    Figure  7.  Numerical simulation results of witness plate deformation

    图  13.0 mm距离下炸药不同时刻的变形

    Figure  8.  Calculated pressure contours at various time for the configuration with 13 mm separation

    图  13.5 mm距离下炸药不同时刻的变形

    Figure  9.  Calculated pressure contours at various times for the configuration with 13.5 mm separation

    图  10  13.0 mm间隔高度下被发装药的爆轰成长过程

    Figure  10.  Detonation development process with spacing distance of 13.0 mm

    图  11  13.5 mm间隔高度下被发装药的熄爆过程

    Figure  11.  Extinguished process with spacing distance of 13.5 mm

    图  13  殉爆距离随屏蔽板厚度变化曲线

    Figure  13.  Variation of sympathetic detonation distance with shield thickness

    图  12  屏蔽装药冲击起爆示意

    Figure  12.  Shock initiation of covered charge

    表  1  主发炸药和屏蔽板的材料模型参数[11-13]

    Table  1.   Parameters for donor charge and shell model[11-13]

    Material ρ0/(g·cm-3 D/(m·s-1 pCJ/GPa A/GPa B/GPa R1 R2 ω E/(109 J·m-3)
    TNT 1.60 6 812 18.56 370 3.23 4.15 0.95 0.3 7
    Material ρ0/(g·cm-3 G/GPa A1/GPa B1/GPa C1 n m Tm/K Tr/K
    45 steel 7.85 82.3 0.507 0.320 0.280 0.064 1.06 1 765 298
    Q235 steel 7.83 80.0 0.235 0.250 0.022 1.000 0.36 1 793 294
    下载: 导出CSV

    表  2  TNT点火增长反应模型参数[13]

    Table  2.   Ignition and growth reactive flow model parameters for TNT[13]

    I/μs–1 G1/( Pa–3·s–1) G2/( Pa–3·s–1) a b c d e g x y z
    8×108 4.20×10–25 2.60×10–25 0.111 0.667 0.667 0.667 0.333 1 6 3 3
    下载: 导出CSV

    表  3  屏蔽装药冲击引爆试验结果

    Table  3.   Results of shock initiation of covered charge

    Explosion type Test No. d/mm h/mm Explosion situation of acceptor charge Pit depth/mm
    Contact explosion 1 20 Exploded 4.22
    2 26 Unexploded 0
    3 23 Unexploded 0
    Non-contact explosion 4 3 10 Exploded 4.20
    5 3 19 Unexploded 0
    6 3 15 Unexploded 0
    7 3 12 Part of the explosion 2.20
    下载: 导出CSV

    表  4  屏蔽装药冲击引爆试验和仿真计算结果

    Table  4.   Test and simulation results of shock initiation of covered charge

    Explosion type Test results Simulation results
    d/mm Explosion situation d/mm Explosion situation
    Contact explosion 20 Exploded 24.0 Exploded
    23 Unexploded 24.5 Unexploded
    Explosion type Test results Simulation results
    h/mm Explosion situation h/mm Explosion situation
    Non-contact explosion 12 Partial explosion 13.0 Exploded
    15 Unexploded 13.5 Unexploded
    下载: 导出CSV
  • [1] 徐松林, 阳世清, 李玉龙. 弹药与爆炸品的安全标准体系 [J]. 安全与环境工程, 2012, 19(5): 85–89 doi: 10.3969/j.issn.1671-1556.2012.05.021

    XU S L, YANG S Q, LI Y L. Safety standard system of ammunitions and explosives [J]. Safety and Environmental Engineering, 2012, 19(5): 85–89 doi: 10.3969/j.issn.1671-1556.2012.05.021
    [2] ROSENBERG Z, DEKEL E. Terminal ballistics [M]. Berlin: Springer, 2012.
    [3] 陈卫东, 张忠, 刘家良. 破片对屏蔽炸药冲击起爆的数值模拟和分析 [J]. 兵工学报, 2009, 30(9): 1187–1191 doi: 10.3321/j.issn:1000-1093.2009.09.007

    CHEN W D, ZHANG Z, LIU J L. Numerical simulation and analysis of shock initiation of shielded explosive impacted by fragments [J]. Acta Armamentarii, 2009, 30(9): 1187–1191 doi: 10.3321/j.issn:1000-1093.2009.09.007
    [4] 童宗保, 王金相, 彭楚才, 等. 预制破片对屏蔽炸药冲击引爆研究 [J]. 科学技术与工程, 2014, 14(7): 173–177 doi: 10.3969/j.issn.1671-1815.2014.07.038

    TONG Z B, WANG J X, PENG C C, et al. Study on the initiation of shielded explosive impacted by prefabricated fragment [J]. Science Technology and Engineering, 2014, 14(7): 173–177 doi: 10.3969/j.issn.1671-1815.2014.07.038
    [5] 杨正才, 廖昕, 李晓刚, 等. 某隔板起爆器冲击起爆过程的数值模拟与实验研究 [J]. 含能材料, 2011, 19(2): 221–225 doi: 10.3969/j.issn.1006-9941.2011.02.022

    YANG Z C, LIAO X, LI X G, et al. Numerical simulation and experimental investigation for shock initiation of bulkhead initiator [J]. Chinese Journal of Energetic Materials, 2011, 19(2): 221–225 doi: 10.3969/j.issn.1006-9941.2011.02.022
    [6] 周杰, 何勇, 何源, 等. 含能毁伤元冲击引爆模拟战斗部试验研究 [J]. 含能材料, 2016, 24(11): 1048–1056 doi: 10.11943/j.issn.1006-9941.2016.11.003

    ZHOU J, HE Y, HE Y, et al. Experimental study on shock initiation of simulative warhead by energetic kill element [J]. Chinese Journal of Energetic Materials, 2016, 24(11): 1048–1056 doi: 10.11943/j.issn.1006-9941.2016.11.003
    [7] WALKER F E, WASLEY R J. Critical energy shock initiation of heteropterous explosive [C]//Explosive Pyrotechnics, 1968.
    [8] LU J P, LI J, KENNEDY D L. Simulation of sympathetic reaction rests for PBXN-109 [C]//Proceedings of 13th Symposium (International) on Detonation. New York, USA, 2006: 1338–1349.
    [9] 王晨, 伍俊英, 陈朗, 等. 壳装炸药殉爆实验和数值模拟 [J]. 爆炸与冲击, 2010, 30(2): 152–158 doi: 10.11883/1001-1455(2010)02-0152-07

    WANG C, WU J Y, CHEN L, et al. Experiments and numerical simulations of sympathetic detonation of explosives in shell [J]. Explosion and Shock Waves, 2010, 30(2): 152–158 doi: 10.11883/1001-1455(2010)02-0152-07
    [10] 时党勇, 李裕春, 张胜民. 基于ANSYS/LS-DYNA8.1进行显示动力分析 [M]. 北京: 清华大学出版社, 2005.
    [11] 陈刚, 陈忠富, 陶俊林, 等. 45钢的Johnson-Cook失效模型 [C]//中国力学学会学术大会, 2005.
    [12] 张磊. Q235钢拉伸性能的有限元仿真与试验 [D]. 长春: 吉林大学, 2012.
    [13] 蒋国平. 非均质凝聚炸药二维冲击起爆实验与Lagrange分析研究 [D]. 长沙: 湖南大学, 2005.
    [14] 北京工业学院八系. 爆炸及其作用(上) [M]. 北京: 国防工业出版社, 1982.
  • 加载中
图(13) / 表(4)
计量
  • 文章访问数:  7128
  • HTML全文浏览量:  2999
  • PDF下载量:  50
出版历程
  • 收稿日期:  2018-07-23
  • 修回日期:  2018-08-23

目录

    /

    返回文章
    返回