Processing math: 100%

顶爆作用下裂隙对锚固洞室振动速度的影响

王光勇 裴晨浩 林加剑

王光勇, 裴晨浩, 林加剑. 顶爆作用下裂隙对锚固洞室振动速度的影响[J]. 高压物理学报, 2019, 33(2): 025201. doi: 10.11858/gywlxb.20180602
引用本文: 王光勇, 裴晨浩, 林加剑. 顶爆作用下裂隙对锚固洞室振动速度的影响[J]. 高压物理学报, 2019, 33(2): 025201. doi: 10.11858/gywlxb.20180602
FANG Leiming, CHEN Xiping, XIE Lei, HE Duanwei, HU Qiwei, LI Xin, JIANG Mingquan, SUN Guang’ai, CHEN Bo, PENG Shuming, LI Hao, HAN Tiexin. High Pressure Neutron Diffraction Technology and Applications at CMRR[J]. Chinese Journal of High Pressure Physics, 2020, 34(5): 050104. doi: 10.11858/gywlxb.20200588
Citation: WANG Guangyong, PEI Chenhao, LIN Jiajian. Vibration Velocities of Anchorage Caverns with Cracks under Top Explosion[J]. Chinese Journal of High Pressure Physics, 2019, 33(2): 025201. doi: 10.11858/gywlxb.20180602

顶爆作用下裂隙对锚固洞室振动速度的影响

doi: 10.11858/gywlxb.20180602
基金项目: 国家自然科学基金(51304067);河南省高等学校青年骨干教师资助计划(2015GGJS-069)
详细信息
    作者简介:

    王光勇(1977-),男,博士,副教授,主要从事岩土工程动载试验研究.E-mail:wgy2003@mail.ustc.edu.cn

  • 中图分类号: O347.1; TU457

Vibration Velocities of Anchorage Caverns with Cracks under Top Explosion

  • 摘要: 基于相似模型试验,利用数值分析方法研究了含裂隙锚固洞室在顶爆作用下质点峰值振速的分布规律,并探讨了裂隙倾角和长度对峰值振速的影响。结果表明:裂隙和洞室表面在迎爆侧存在振速放大效应,洞室两侧和底部振速远小于拱顶;随着裂隙长度的增加,锚固洞室拱顶、拱脚和两帮峰值振速先减小后增加再减小,除了长度较短的情况,裂隙的存在使锚固洞室拱顶的峰值振速增加;随着裂隙向右倾斜的倾角增加,拱脚和两帮的峰值振速出现不对称,洞室右边的拱脚和侧帮峰值振速大于左边;拱顶峰值振速先减小后增加,倾角为45°时拱顶峰值振速最小,相较无裂隙洞室降低了48.2%,有效减弱了结构的动力响应。

     

  • 图  模型简图(单位:cm)

    Figure  1.  Model diagram (Unit: cm)

    图  爆炸压力时程曲线

    Figure  2.  Time history curve of blasting pressure

    图  模拟和实测压应力时程曲线对比

    Figure  3.  Pressure curves comparison between simulation and test

    图  损伤的模拟结果与试验结果对比

    Figure  4.  Damage comparison between simulation and test

    图  振速监测点分布(单位:cm)

    Figure  5.  Distribution of vibration speed monitoring points (Unit: cm)

    图  裂隙长度为30 cm时质点振动速度时程曲线

    Figure  6.  Time history curves of particle vibration velocity of 30 cm-long crack

    图  不同裂隙长度下质点峰值振动速度衰减曲线

    Figure  7.  Decay curve of particle peak vibration velocity under different crack lengths

    图  不同裂隙长度下拱顶质点峰值振动速度

    Figure  8.  vp of vault under different crack lengths

    图  不同裂隙长度下拱脚质点峰值振动速度

    Figure  9.  vp of arch springing under different crack lengths

    图  10  不同裂隙长度下侧帮质点峰值振动速度

    Figure  10.  vp of side wall under different crack lengths

    图  11  不同裂隙长度下底板质点峰值振动速度

    Figure  11.  vp of floor under different crack lengths

    图  12  质点振动速度矢量图

    Figure  12.  Vector graph of particle vibration velocity

    图  13  不同裂隙倾角下拱顶质点峰值振动速度

    Figure  13.  vp of vault under different crack inclination angles

    图  14  不同裂隙倾角下拱脚质点峰值振动速度

    Figure  14.  vp of arch springing under different crack inclination angles

    图  15  不同裂隙倾角下侧帮质点峰值振动速度

    Figure  15.  vp of side walls under different crack inclination angles

    图  16  不同裂隙倾角下底板质点峰值振动速度

    Figure  16.  vp of floor under different crack inclination angles

    表  1  CDP模型参数

    Table  1.   Parameters of CDP model

    Density/(g·cm-3)E/GPaμDilation angle/(°)Eccentricityσb0/σc0KViscosity paramenter
    1.82.030.16250.11.160.666 670
    下载: 导出CSV

    表  2  洞室质点峰值振动速度

    Table  2.   Particle peak vibration velocity of cavern

    Inclination angleParticle peak vibration velocity/(m·s-1)
    VaultLeft arch springingRight arch springingLeft side wallRight side wallFloor
    Non-crack1.640.880.880.490.490.15
    2.040.670.670.510.510.19
    30°1.250.510.570.430.440.17
    45°0.850.440.670.420.490.15
    60°0.960.530.760.420.520.16
    90°1.450.770.770.490.490.15
    下载: 导出CSV
  • [1] 俞缙, 钱七虎, 赵晓豹. 岩体结构面对应力波传播规律影响的研究进展 [J]. 兵工学报, 2009, 30(Suppl 2): 308–316

    YU J, QIAN Q H, ZHAO X B. Research progress on effects of structural planes of rock mass on press wave propagation law [J]. Acta Armamentarii, 2009, 30(Suppl 2): 308–316
    [2] 易长平, 卢文波, 张建华. 爆破振动作用下地下洞室临界振速的研究 [J]. 爆破, 2005(4): 4–7 doi: 10.3963/j.issn.1001-487X.2005.04.002

    YI C P, LU W B, ZHANG J H. Study on critical failure vibration velocity of underground chambers under action of blasting vibration [J]. Blasting, 2005(4): 4–7 doi: 10.3963/j.issn.1001-487X.2005.04.002
    [3] LEE V W, CAO H. Diffraction of SV waves by circular canyons of various depths [J]. Journal of Engineering Mechanics, 1989, 115(9): 2035–2056. doi: 10.1061/(ASCE)0733-9399(1989)115:9(2035)
    [4] 缪文红, 王超, 路世伟, 等. 爆破地震波作用下圆形洞室围岩振动速度分布规律 [J]. 爆破, 2016, 33(4): 51–54 doi: 10.3963/j.issn.1001-487X.2016.04.009

    MIAO W H, WANG C, LU S W, et al. Distribution of vibration velocities in rock mass of circular tunnels subjected to blasting seismic waves [J]. Blasting, 2016, 33(4): 51–54 doi: 10.3963/j.issn.1001-487X.2016.04.009
    [5] 单仁亮, 王二成, 宋立伟, 等. 直墙半圆拱巷道爆破震动数值分析 [J]. 岩土力学, 2013, 34(Suppl 1): 437–443

    SHAN R L, WANG E C, SONG L W, et al. Blasting vibration numerical analysis of vertical wall semicircular arch roadway [J]. Rock and soil Mechanics, 2013, 34(Suppl 1): 437–443
    [6] ZHAO H B, LONG Y, LI X H, et al. Experimental and numerical investigation of the effect of blast-induced vibration from adjacent tunnel on existing tunnel [J]. Ksce Journal of Civil Engineering, 2016, 20(1): 431–439. doi: 10.1007/s12205-015-0130-9
    [7] XIA X, LI H, LIU Y, et al. A case study on the cavity effect of a water tunnel on the ground vibrations induced by excavating blasts [J]. Tunnelling & Underground Space Technology, 2018, 71: 292–297.
    [8] 王光勇, 顾金才, 陈安敏, 等. 锚固洞室在顶爆作用下破坏形式及破坏过程研究 [J]. 岩土工程学报, 2015, 37(8): 1381–1389

    WANG G Y, GU J C, CHEN A M, et al. Failure modes and process of tunnels reinforced by rockbolts under top explosion [J]. Chinese Journal of Geotechnical Engineering, 2015, 37(8): 1381–1389
    [9] 王光勇, 顾金才, 陈安敏, 等. 端部消波和加密锚杆支护洞室抗爆能力模型试验研究 [J]. 岩石力学与工程学报, 2010, 29(1): 51–58

    WANG G Y, GU J C, CHEN A M, et al. Model test research on anti-explosion capacity of underground openings with end weakened by holes and anchor top reinforced by dense rock bolts [J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29(1): 51–58
    [10] 柴少波, 李建春, 李海波. 柱面波在节理岩体中的传播特性 [J]. 岩石力学与工程学报, 2014, 33(3): 523–530

    CHAI S B, LI J C, LI H B. Propagation characteristics of cylindrical wave in joint rock masses [J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33(3): 523–530
    [11] DENG X F, ZHU J B, CHEN S G, et al. Numerical study on tunnel damage subject to blast-induced shock wave in jointed rock masses [J]. Tunnelling and Underground Space Technology, 2014, 43(6): 88–100.
    [12] 杨仁树, 许鹏, 杨立云, 等. 节理岩体中爆炸应力波传播规律的研究 [J]. 金属矿山, 2016, 45(6): 49–54 doi: 10.3969/j.issn.1001-1250.2016.06.009

    YANG R S, XU P, YANG L Y, et al. Study of regularity of explosive stress wave propagation in jointed rock mass [J]. Metal Mine, 2016, 45(6): 49–54 doi: 10.3969/j.issn.1001-1250.2016.06.009
    [13] PRICE R H, BOYD P J, NOEL J S, et al. Relation between static and dynamic rock properties in welded and nonwelded tuff: SAND-94-0306C [R]. Office of Scientific & Technical Information Technical Reports, 1994.
    [14] 王海兵, 张海波, 田宙, 等. 岩石动力学计算中的网格效应及机理研究 [J]. 兵工学报, 2016, 37(10): 1828–1836 doi: 10.3969/j.issn.1000-1093.2016.10.009

    WANG H B, ZHANG H B, TIAN Z, et al. Mesh size effect and its mechanism research in numerical calculation of rock dynamics [J]. Acta Armamentarii, 2016, 37(10): 1828–1836 doi: 10.3969/j.issn.1000-1093.2016.10.009
  • 加载中
图(16) / 表(2)
计量
  • 文章访问数:  8612
  • HTML全文浏览量:  4132
  • PDF下载量:  37
出版历程
  • 收稿日期:  2018-07-20
  • 修回日期:  2018-08-10

目录

    /

    返回文章
    返回