Vibration Velocities of Anchorage Caverns with Cracks under Top Explosion
-
摘要: 基于相似模型试验,利用数值分析方法研究了含裂隙锚固洞室在顶爆作用下质点峰值振速的分布规律,并探讨了裂隙倾角和长度对峰值振速的影响。结果表明:裂隙和洞室表面在迎爆侧存在振速放大效应,洞室两侧和底部振速远小于拱顶;随着裂隙长度的增加,锚固洞室拱顶、拱脚和两帮峰值振速先减小后增加再减小,除了长度较短的情况,裂隙的存在使锚固洞室拱顶的峰值振速增加;随着裂隙向右倾斜的倾角增加,拱脚和两帮的峰值振速出现不对称,洞室右边的拱脚和侧帮峰值振速大于左边;拱顶峰值振速先减小后增加,倾角为45°时拱顶峰值振速最小,相较无裂隙洞室降低了48.2%,有效减弱了结构的动力响应。Abstract: Based on the similar model test, we studied the peak particle vibration velocity (vp) of the crack-containing anchorage caverns under top explosion using numerical analysis method, and discussed the influence of the crack’s inclination angle and length on vp. The results show a vibration velocity-amplification effect on the crack and cavern surface of the blast side, vp of both sides and bottom of the cavern are much smaller than that of the vault. As the crack length increases, vp of the vault, arch springing and side walls of the anchoring cavern first decrease and then increase and decrease again. The existence of the crack amplifies the arch vp of the anchoring cavern except for the short-length crack condition. As the inclination angle of the crack leans to right, vp of the arch springing and the side walls become asymmetrical, vp of the right arch springing (or right side wall) is greater than that of the left side. The vp of the vault first decreases and then increases as the inclination angle increases, its minimum occurs when the inclination angle is 45°, which is 48.2% lower than that of the non-crack cavity, suggesting that the dynamic response of the structure is effectively weakened.
-
Key words:
- underground engineering /
- blast loads /
- anchorage caverns /
- opening crack /
- vibration velocity
-
表 1 CDP模型参数
Table 1. Parameters of CDP model
Density/(g·cm-3) $E$/GPa μ Dilation angle/(°) Eccentricity σb0/σc0 K Viscosity paramenter 1.8 2.03 0.16 25 0.1 1.16 0.666 67 0 表 2 洞室质点峰值振动速度
Table 2. Particle peak vibration velocity of cavern
Inclination angle Particle peak vibration velocity/(m·s-1) Vault Left arch springing Right arch springing Left side wall Right side wall Floor Non-crack 1.64 0.88 0.88 0.49 0.49 0.15 0° 2.04 0.67 0.67 0.51 0.51 0.19 30° 1.25 0.51 0.57 0.43 0.44 0.17 45° 0.85 0.44 0.67 0.42 0.49 0.15 60° 0.96 0.53 0.76 0.42 0.52 0.16 90° 1.45 0.77 0.77 0.49 0.49 0.15 -
[1] 俞缙, 钱七虎, 赵晓豹. 岩体结构面对应力波传播规律影响的研究进展 [J]. 兵工学报, 2009, 30(Suppl 2): 308–316YU J, QIAN Q H, ZHAO X B. Research progress on effects of structural planes of rock mass on press wave propagation law [J]. Acta Armamentarii, 2009, 30(Suppl 2): 308–316 [2] 易长平, 卢文波, 张建华. 爆破振动作用下地下洞室临界振速的研究 [J]. 爆破, 2005(4): 4–7 doi: 10.3963/j.issn.1001-487X.2005.04.002YI C P, LU W B, ZHANG J H. Study on critical failure vibration velocity of underground chambers under action of blasting vibration [J]. Blasting, 2005(4): 4–7 doi: 10.3963/j.issn.1001-487X.2005.04.002 [3] LEE V W, CAO H. Diffraction of SV waves by circular canyons of various depths [J]. Journal of Engineering Mechanics, 1989, 115(9): 2035–2056. doi: 10.1061/(ASCE)0733-9399(1989)115:9(2035) [4] 缪文红, 王超, 路世伟, 等. 爆破地震波作用下圆形洞室围岩振动速度分布规律 [J]. 爆破, 2016, 33(4): 51–54 doi: 10.3963/j.issn.1001-487X.2016.04.009MIAO W H, WANG C, LU S W, et al. Distribution of vibration velocities in rock mass of circular tunnels subjected to blasting seismic waves [J]. Blasting, 2016, 33(4): 51–54 doi: 10.3963/j.issn.1001-487X.2016.04.009 [5] 单仁亮, 王二成, 宋立伟, 等. 直墙半圆拱巷道爆破震动数值分析 [J]. 岩土力学, 2013, 34(Suppl 1): 437–443SHAN R L, WANG E C, SONG L W, et al. Blasting vibration numerical analysis of vertical wall semicircular arch roadway [J]. Rock and soil Mechanics, 2013, 34(Suppl 1): 437–443 [6] ZHAO H B, LONG Y, LI X H, et al. Experimental and numerical investigation of the effect of blast-induced vibration from adjacent tunnel on existing tunnel [J]. Ksce Journal of Civil Engineering, 2016, 20(1): 431–439. doi: 10.1007/s12205-015-0130-9 [7] XIA X, LI H, LIU Y, et al. A case study on the cavity effect of a water tunnel on the ground vibrations induced by excavating blasts [J]. Tunnelling & Underground Space Technology, 2018, 71: 292–297. [8] 王光勇, 顾金才, 陈安敏, 等. 锚固洞室在顶爆作用下破坏形式及破坏过程研究 [J]. 岩土工程学报, 2015, 37(8): 1381–1389WANG G Y, GU J C, CHEN A M, et al. Failure modes and process of tunnels reinforced by rockbolts under top explosion [J]. Chinese Journal of Geotechnical Engineering, 2015, 37(8): 1381–1389 [9] 王光勇, 顾金才, 陈安敏, 等. 端部消波和加密锚杆支护洞室抗爆能力模型试验研究 [J]. 岩石力学与工程学报, 2010, 29(1): 51–58WANG G Y, GU J C, CHEN A M, et al. Model test research on anti-explosion capacity of underground openings with end weakened by holes and anchor top reinforced by dense rock bolts [J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29(1): 51–58 [10] 柴少波, 李建春, 李海波. 柱面波在节理岩体中的传播特性 [J]. 岩石力学与工程学报, 2014, 33(3): 523–530CHAI S B, LI J C, LI H B. Propagation characteristics of cylindrical wave in joint rock masses [J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33(3): 523–530 [11] DENG X F, ZHU J B, CHEN S G, et al. Numerical study on tunnel damage subject to blast-induced shock wave in jointed rock masses [J]. Tunnelling and Underground Space Technology, 2014, 43(6): 88–100. [12] 杨仁树, 许鹏, 杨立云, 等. 节理岩体中爆炸应力波传播规律的研究 [J]. 金属矿山, 2016, 45(6): 49–54 doi: 10.3969/j.issn.1001-1250.2016.06.009YANG R S, XU P, YANG L Y, et al. Study of regularity of explosive stress wave propagation in jointed rock mass [J]. Metal Mine, 2016, 45(6): 49–54 doi: 10.3969/j.issn.1001-1250.2016.06.009 [13] PRICE R H, BOYD P J, NOEL J S, et al. Relation between static and dynamic rock properties in welded and nonwelded tuff: SAND-94-0306C [R]. Office of Scientific & Technical Information Technical Reports, 1994. [14] 王海兵, 张海波, 田宙, 等. 岩石动力学计算中的网格效应及机理研究 [J]. 兵工学报, 2016, 37(10): 1828–1836 doi: 10.3969/j.issn.1000-1093.2016.10.009WANG H B, ZHANG H B, TIAN Z, et al. Mesh size effect and its mechanism research in numerical calculation of rock dynamics [J]. Acta Armamentarii, 2016, 37(10): 1828–1836 doi: 10.3969/j.issn.1000-1093.2016.10.009