基于岩浆凝固的地壳动力学研究

霍睿智 贺端威

霍睿智, 贺端威. 基于岩浆凝固的地壳动力学研究[J]. 高压物理学报, 2018, 32(5): 051201. doi: 10.11858/gywlxb.20180599
引用本文: 霍睿智, 贺端威. 基于岩浆凝固的地壳动力学研究[J]. 高压物理学报, 2018, 32(5): 051201. doi: 10.11858/gywlxb.20180599
HUO Ruizhi, HE Duanwei. Crustal Dynamics Based on Magma Solidification[J]. Chinese Journal of High Pressure Physics, 2018, 32(5): 051201. doi: 10.11858/gywlxb.20180599
Citation: HUO Ruizhi, HE Duanwei. Crustal Dynamics Based on Magma Solidification[J]. Chinese Journal of High Pressure Physics, 2018, 32(5): 051201. doi: 10.11858/gywlxb.20180599

基于岩浆凝固的地壳动力学研究

doi: 10.11858/gywlxb.20180599
基金项目: 

中国工程物理院中子物理学重点实验室课题 2014AB01

国家自然科学基金 51472171

国家自然科学基金 11427810

详细信息
    作者简介:

    霍睿智(1993-), 女, 硕士, 主要从事地壳动力学研究.E-mail:2323155992@qq.com

    通讯作者:

    贺端威(1969-), 男, 博士, 教授, 主要从事大腔体静高压技术、超硬材料及高压下的弹塑性研究.E-mail:duanweihe@scu.edu.cn

  • 中图分类号: P65;P553

Crustal Dynamics Based on Magma Solidification

  • 摘要: 地球在形成之初处于熔融状态,随着时间的推移,地球表面的岩浆不断冷却、凝固,发展成现在的圈层结构,并且地球物质的冷却及液-固转变依然在持续。通过对地震发生后地球日长变化进行统计分析,发现总体上地震后地球自转速率加快。分析认为,这一现象是由于地幔部分岩浆冷却凝固使地壳岩石圈下部体积塌缩所致。由此,建立了一个地壳动力学模型,以解释地壳各板块间的相互作用和相对运动,并且认为地震等地质活动的动力学成因主要是地球内部熔体持续凝固所导致的地壳下部体积收缩、压力减小,在重力作用下,构成地壳的各板块之间的相互作用加剧,原有力学结构失稳,发生大规模岩层错位、断裂,从而引起地震、火山爆发等剧烈的地质活动。通过建立热学模型和力学模型,验证了上述观点。

     

  • 图  1963~2016年7.5级以上地震的震源深度分布

    Figure  1.  Focal depth distribution of earthquakes above magnitude 7.5 from 1963 to 2016

    表  1  6次大地震及其对LOD变化的影响

    Table  1.   The influences of six great earthquakes on the changes in length-of-day (ΔLOD)

    No. Aera Date Latitude/(°) Longitude/(°) Depth/km Moment magnitude ΔLOD Ref.
    1 Bio-Bio, Chile 1960-05-22 -38.143 -73.407 25 9.5 -8.4 [14]
    2 Southern Alaska 1964-03-28 60.908 147.339 25 9.2 6.8 [14]
    3 Offshore Valparaiso, Chile 1985-03-03 -33.135 71.871 33 8.0 -0.1 [19]
    4 Michoacan, Mexico 1985-09-19 18.190 102.533 27.9 8.0 -0.085 [14]
    5 Off the west coast of northern Sumatra 2004-12-26 3.295 -95.982 30 9.1 -0.48 [20]
    6 Near the east coast of Honshu, Japan 2011-03-11 38.296 142.373 29 9.1 -5.81 [21]
    Average -1.3 This work
    下载: 导出CSV

    表  2  全球不同类型岩浆岩的主要化学成分

    Table  2.   Main chemical compositions for different types of magmatic rocks on Earth

    Type of rock Mass fraciton/% Ref.
    SiO2 Al2O3 FeO MgO CaO Na2O K2O Sum
    Alkali olivine basalts 46.7 15.1 11.7 7.7 9.9 98.2 [32]
    Tholeiitic basatle (tholeiites and olivine Tholeiites) of the Hawailian Islands 49.36 13.94 8.53 8.44 10.3 99.03 [33]
    Alkalic basalt 46.46 14.64 9.11 8.19 10.33 99.71 [33]
    Picrite basalt of oceanite type 46.41 8.53 9.82 20.81 7.38 100.1 [33]
    Hawaiite ('andesine andesite') 48.6 16.49 9.11 8.19 10.33 99.23 [33]
    Primary tholeiite of the Izu-Hakone region 48.73 16.53 8.44 8.24 12.25 100.02 [34]
    Olivine basalt of Niuafo'au 50.37 14.65 9.24 7.13 11.74 99.8 [35]
    Tholeiitic picrite-basalt 46.4 8.5 9.8 20.8 7.4 99.7 [36]
    Ankaramite 44.1 12.1 9.6 11.5 13 99.3 [36]
    K-poor alkali olivine basalt 45.4 14.7 9.2 7.8 10.5 99.3 [36]
    Hawaiite 47.9 15.9 7.6 4.8 8 99.1 [36]
    Nephelinite 39.7 11.4 8.2 12.1 12.8 98.4 [36]
    Olivine tholeiite 49.16 13.33 9.71 10.41 10.93 100.12 [37]
    Tholeiite 53.8 13.9 9.3 4.1 7.9 100.7 [38]
    Tholeiite andesite 59.31 13.77 6.48 2.27 5.58 3.91 97.97 [39]
    Icelandite 61.76 15.36 5.84 1.76 5.04 4.37 100.0 [40]
    High-alumina basalt 49.15 17.73 7.2 6.91 9.91 99.18 [38]
    High-alumina andesite 58.65 17.43 3.48 3.28 6.26 3.82 99.1 [39]
    Dacite 69.68 15.21 1.9 0.91 2.7 4.47 99.46 [40]
    Rhyolite 73.23 14.03 1.7 0.35 1.32 3.94 4.08 99.56 [40]
    Pantellerite 69.8 7.4 6.15 0.05 0.45 6.7 4.3 98.19 [41]
    Commendite 75.23 11.99 1.25 0.02 0.27 4.79 4.67 99.42 [41]
    Alkalic picrite-basalt 46.57 8.2 9.75 19.65 9.43 99.79 [42]
    K-rich alkali olivine basalt 42.43 14.15 8.48 6.71 11.91 99.18 [43]
    Trachybasalr 46.48 16.68 7.3 4.65 9.4 99.68 [43]
    Trachyte 60.7 20.5 0.4 0.2 1.4 6.2 6.7 99.13 [43]
    Tristanite 55.85 18.98 3.11 2.04 4.51 5.16 98.63 [44]
    Benmorite 55.64 16.38 4.91 1.06 2.9 6.07 3.49 95.23 [44]
    Phonolite 60.64 18.29 1.18 0.09 0.83 8.93 5.1 98.08 [45]
    Wyomingite 54.09 9.94 1.48 6.99 4.71 11.38 97.3 [46]
    Average 53.41 14.19 6.67 6.30 7.31 99.087
    下载: 导出CSV

    表  3  不同熔融岩浆的化学成分及其在高温高压下的密度

    Table  3.   Chemical compositions of different molten magmas and their densities at high temperature and high pressure

    Type of molten magma Mass fraciton/% Density/(g·cm-3) Ref.
    SiO2 Al2O3 FeO MgO CaO Sum
    Magma* 53.41 14.19 6.67 6.3 7.31 99.1 2.88 This work
    PHN1611 45.1 2.8 10.4 38.4 3.4 100 2.87a, 2.94b [47]
    Mid-ocean ridge basalt 51.81 15.95 9.97 7.86 11.69 100 2.88c [48]
    Hydrous peridotite magma 45.9 3.8 8.5 32.5 3.6 99.2 2.77d, 2.8e, 2.83f [49]
    Note:(1) The asterisk “*” represents the main chemical compositions of magma in this paper.
    (2) The letter “a” and “b” represent the values come from compression curves of PHN1611 melt at 31 kPa/2 360 ℃ and 31 kPa/2 030 ℃ respectively.
    (3) The letter “c” represents the value comes from compression curves of basaltic melts at 31 kPa/2 200 ℃.
    (4) The letter “d”, “e” and “f” represent the values come from isothermal compression curves of the peridotite melt at 31 kPa/1 973 K, 31 kPa/1 873 K and 31 kPa/1 773 K respectively.
    下载: 导出CSV

    表  4  不同固态岩浆岩的化学成分及其在高温高压下的密度

    Table  4.   Chemical compositions of different solid magmatic rocks and their densities at high temperature and pressure

    Type of magmatic rock Mass fraciton/% Density/(g·cm-3) Ref.
    SiO2 Al2O3 FeO MgO CaO Sum
    Average sediment 62.77 13.12 4.28 3 8.76 100 3.16c [50]
    Mid-ocean ridge basalt 49.67 16.1 7.3 11.42 7.66 100 3.5d [50]
    Hypothetical magmatic rocka 56.22 14.61 5.79 7.21 8.21 100 3.3e This work
    Magmab 53.41 14.19 6.67 6.3 7.31 99.1 3.3e This work
    Note:(1) The letter “a” represents an hypothetical magmatic rock which is a mixture of average sediment and mid-ocean ridge basalt in a ratio of one to one.
    (2) The letter “b” represents the main mineral composition content of the magma which is set in this paper.
    (3) The letters “c” and “d” represent the values come from density chart for average sediment and MORB at 3.1 GPa/1 000 ℃ respectively.
    (4) The letter “e” represents the value is the average of c and d.
    下载: 导出CSV
  • [1] CLOUD P.A working model of the primitive Earth[J].American Journal of Science, 1972, 272(6):537-548. doi: 10.2475/ajs.272.6.537
    [2] VAN KRANENDONK M J, ALTERMANN W, BEARD B L, et al. A chronostratigraphic division of the Precambrian: possibilities and challenges[M]//The Geologic Time Scale. Elsevier, 2012: 299-392.
    [3] WEGENER A.Die entstehung der kontinente[J].Geologische Rundschau, 1912, 3(4):276-292. doi: 10.1007/BF02202896
    [4] HESS H H.History of ocean basins[J].Petrologic Studies, 1962:599-620.
    [5] DIETZ R S.Continent and ocean basin evolution by spreading of the sea floor[J].Nature, 1961, 190(4779):854-857. doi: 10.1038/190854a0
    [6] BACKUS G E.Magnetic anomalies over oceanic ridges[J].Nature, 1964, 201(4919):591-592. doi: 10.1038/201591a0
    [7] WILSON J T.A new class of faults and their bearing on continental drift[J].Nature, 1965, 207(4995):343. doi: 10.1038/207343a0
    [8] MORGAN W J.Rises, trenches, great faults, and crustal blocks[J].Journal of Geophysical Research, 1968, 73(6):1959-1982. doi: 10.1029/JB073i006p01959
    [9] MCKENZIE D P, PARKER R L.The North Pacific:an example of tectonics on a sphere[J].Nature, 1967, 216(5122):1276-1280. doi: 10.1038/2161276a0
    [10] HOLMES A.Radioactivity and earth movements[J].Nature, 1931, 128(3229):496. doi: 10.1144/transglas.18.3.559
    [11] MOORE J C.A new concept of stability, M0-stability[J].Journal of Mathematical Analysis and Applications, 1985(1):1-13. http://ieeexplore.ieee.org/iel7/4079545/7029779/07068087.pdf?arnumber=7068087
    [12] HARDY G H, LITTLEWOOD J E, PÓLYA G.Inequalities[J].Cambridge at the University Press, 1964(3):115-138. http://ci.nii.ac.jp/ncid/BA0352654X?l=en
    [13] STOYKO A, STOYKO N.Rotation de la terre, phénomènes géophysiques et activité du soleil[J].Bulletin de Lacademie Royale de Belgique, 1969, 5(55):279-285. http://adsabs.harvard.edu/abs/1969BARB...55..279S
    [14] CHAO B F, GROSS R S.Changes in the Earth's rotation and low-degree gravitational field induced by earthquakes[J].Geophysical Journal of the Royal Astronomical Society, 1987, 91(3):569-596. doi: 10.1111/j.1365-246X.1987.tb01659.x
    [15] HOPKIN M. Sumatran quake sped up Earth's rotation[J/OL]. Nature, 2004-12-30. https://www.nature.com/news/2004/041229/full/news041229-6.html.
    [16] BUIS A. Chilean quake may have shortened Earth days[N/OL]. NASA, 2010-03-01. https://www.jpl.nasa.gov/news/news.php?release=2010-071.
    [17] BUIS A. Japan quake may have shortened earth days, moved axis[N/OL]. NASA, 2011-03-14. https://www.nasa.gov/topics/earth/features/japanquake/earth20110314.html.
    [18] O'CONNELL R J, DZIEWONSKI A M.Excitation of the Chandler wobble by large earthquakes[J].Nature, 1976, 262(5566):259-262. doi: 10.1038/262259a0
    [19] CHAO B F, GROSS R S.Changes in the Earth's rotational energy induced by earthquakes[J].Geophysical Journal International, 1995, 122(3):776-783. doi: 10.1111/gji.1995.122.issue-3
    [20] XU C, SUN W, ZHOU X.Effects of huge earthquakes on Earth rotation and the length of day[J].Terrestrial Atmospheric & Oceanic Sciences, 2013, 24(41):649-656. doi: 10.3319/TAO.2013.01.16.02(TibXS)
    [21] XU C, SUN W, CHAO B F.Formulation of coseismic changes in Earth rotation and low-degree gravity field based on the spherical Earth dislocation theory[J].Journal of Geophysical Research:Solid Earth, 2014, 119(12):9031-9041. doi: 10.1002/2014JB011328
    [22] OLIVER J.Contributions of seismology to plate tectonics[J].AAPG Bulletin, 1972, 56(2):214-225.
    [23] JACKSON E D, WRIGHT T L.Xenoliths in the Honolulu volcanic series, Hawaii[J].Journal of Petrology, 1970, 11(2):405-433. doi: 10.1093/petrology/11.2.405
    [24] 周瑶琪.地球动力学系统及演化[M].北京:科学出版社, 2013:34-40, 340-341.
    [25] JEANLOZ R, MORRIS S.Temperature distribution in the crust and mantle[J].Annual Review of Earth and Planetary Sciences, 1986, 14(1):377-415. doi: 10.1146/annurev.ea.14.050186.002113
    [26] HUNTINGDON A T, BECK M S.Oxygen and sulphur fugacities of magmatic gases directly measured in active vents of Mount Etna:discussion[J].Philosophical Transactions of the Royal Society of London Series A, 1973, 274(1238):137-146. doi: 10.1098/rsta.1973.0033
    [27] WRIGHT T L, KINOSHITA W T, PECK D L.March 1965 eruption of Kilauea volcano and the formation of Makaopuhi lava lake[J].Journal of Geophysical Research, 1968, 73(10):3181-3205. doi: 10.1029/JB073i010p03181
    [28] FLYNN L P, MOUGINIS-MARK P J.Temperature of an active lava channel from spectral measurements, Kilauea Volcano, Hawaii[J].Bulletin of Volcanology, 1994, 56(4):297-301. doi: 10.1007/BF00302082
    [29] RICHTER D H, AULT W U, EATON J P, et al. The 1961 eruption of Kilauea volcano, Hawaii[M]//US Geological Survey Professional Paper. US Department of the Interior, US Geological Survey, 1964.
    [30] RAWSON D E.Drilling into molten lava in the Kilauea Iki volcanic crater, Hawaii[J].Nature, 1960, 188(4754):930-931. doi: 10.1038/188930a0
    [31] BURGI P Y, CAILLET M, HAEFELI S.Field temperature measurements at Erta'Ale lava lake, Ethiopia[J].Bulletin of Volcanology, 2002, 64(7):472-485. https://www.researchgate.net/profile/Pierre-Yves_Burgi/publication/225736234_Field_temperature_measurements_at_Erta'Ale_Lava_Lake_Ethiopia/links/553104190cf20ea0a06febbe.pdf
    [32] SCHWARZER R R, ROGERS J J W.A worldwide comparison of alkali olivine basalts and their differentiation trends[J].Earth and Planetary Science Letters, 1974, 23(3):286-296. doi: 10.1016/0012-821X(74)90117-4
    [33] MACDONALD G A, KATSURA T.Chemical composition of Hawaiian lavas[J].Journal of Petrology, 1964, 5(1):82-133. doi: 10.1093/petrology/5.1.82
    [34] KUNO H.Lateral variation of basalt magma type across continental margins and island arcs[J].Bulletin Volcanologique, 1966, 29(1):195-222. doi: 10.1007/BF02597153
    [35] MACDONALD G A.Notes on Niuafo'ou[J].American Journal of Science, 1948, 246(2):65-77. doi: 10.2475/ajs.246.2.65
    [36] MACDONALD G A.Composition and origin of Hawaiian lavas[J].Studies in volcanology:a memoir in honor of Howel Williams, 1968, 116:477-522. doi: 10.1130/MEM116-p477
    [37] YODER H S JR, TILLEY C E.Origin of basalt magmas:an experimental study of natural and synthetic rock systems[J].Journal of Petrology, 1962, 3(3):342-532. doi: 10.1093/petrology/3.3.342
    [38] WATERS A C. Basalt magma types and their tectonic associations: Pacific Northwest of the United States[M]//The Crust of the Pacific Basin. American Geophysical Union, 2013: 158-170.
    [39] MCBIRNEY A R.Andesitic and rhyolitic volcanism of orogenic belts[J].The Earth's Crust and Upper Mantle, 1969:501-507. http://adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=1969GMS....13..501M&db_key=PHY&link_type=ABSTRACT
    [40] CARMICHAEL I S E.The petrology of Thingmuli, a tertiary volcano in eastern Iceland[J].Journal of Petrology, 1964, 5(3):435-460. doi: 10.1093/petrology/5.3.435
    [41] NOBLE D C.Systematic variation of major elements in comendite and pantellerite glasses[J].Earth and Planetary Science Letters, 1968, 4(2):167-172. doi: 10.1016/0012-821X(68)90011-3
    [42] LE MAITRE R W.Petrology of volcanic rocks, Gough Island, south Atlantic[J].Geological Society of America Bulletin, 1962, 73(11):1309-1340. doi: 10.1130/0016-7606(1962)73[1309:POVRGI]2.0.CO;2
    [43] BAKER P E, GASS I G, HARRIS P G, et al.The volcanological report of the Royal Society Expedition to Tristan da Cunha, 1962[J].Philosophical Transactions of the Royal Society of London A, 1964, 256(1075):439-575. doi: 10.1098/rsta.1964.0011
    [44] TILLEY C E, MUIR I D.Intermediate members of the oceanic basalt-trachyte association[J].Geologiska Föreningen i Stockholm Förhandlingar, 1964, 85(4):436-444. doi: 10.1080/11035896409455489
    [45] BAKER I.Petrology of the volcanic rocks of Saint Helena Island, South Atlantic[J].Geological Society of America Bulletin, 1969, 80(7):1283-1310. doi: 10.1130/0016-7606(1969)80[1283:POTVRO]2.0.CO;2
    [46] CARMICHAEL I S E.The mineralogy and petrology of the volcanic rocks from the Leucite Hills, Wyoming[J].Contributions to Mineralogy and Petrology, 1967, 15(1):24-66. http://ci.nii.ac.jp/naid/30001996434
    [47] SUZUKI A, OHTANI E.Density of peridotite melts at high pressure[J].Physics and Chemistry of Minerals, 2003, 30(8):449-456. doi: 10.1007/s00269-003-0322-6
    [48] OHTANI E, MAEDA M.Density of basaltic melt at high pressure and stability of the melt at the base of the lower mantle[J].Earth and Planetary Science Letters, 2001, 193(1/2):69-75. http://www.sciencedirect.com/science/article/pii/S0012821X01005052
    [49] SAKAMAKI T, OHTANI E, URAKAWA S, et al.Measurement of hydrous peridotite magma density at high pressure using the X-ray absorption method[J].Earth and Planetary Science Letters, 2009, 287(3/4):293-297. http://www.sciencedirect.com/science/article/pii/S0012821X09004488
    [50] MASSONNE H J, WILLNER A P, GERYA T.Densities of metapelitic rocks at high to ultrahigh pressure conditions:what are the geodynamic consequences?[J].Earth and Planetary Science Letters, 2007, 256(1/2):12-27. https://www.deepdyve.com/lp/elsevier/densities-of-metapelitic-rocks-at-high-to-ultrahigh-pressure-URIs0M9xt0
    [51] FUKUYAMA H.Heat of fusion of basaltic magma[J].Earth and Planetary Science Letters, 1985, 73(2/3/4):407-414. doi: 10.1016/0012-821X(85)90088-3
    [52] SPARKS R S J.The role of crustal contamination in magma evolution through geological time[J].Earth and Planetary Science Letters, 1986, 78(2/3):211-223. http://www.sciencedirect.com/science/article/pii/0012821X86900622
    [53] MAGDE L S, SPARKS D W.Three-dimensional mantle upwelling, melt generation, and melt migration beneath segment slow spreading ridges[J].Journal of Geophysical Research:Solid Earth, 1997, 102(B9):20571-20583. https://www.ldeo.columbia.edu/node/13010
    [54] JAUPART C, LABROSSE S, LUCAZEAU F, et al.7.06-temperatures, heat and energy in the mantle of the earth[J].Treatise on Geophysics, 2007, 7:223-270. http://www.sciencedirect.com/science/article/pii/B9780444527486001140
    [55] DAVIES J H, DAVIES D R.Earth's surface heat flux[J].Solid Earth, 2010, 1(1):5-24. doi: 10.5194/se-1-5-2010
    [56] SCLATER J G, JAUPART C, GALSON D.The heat flow through oceanic and continental crust and the heat loss of the Earth[J].Reviews of Geophysics, 1980, 18(1):269-311. doi: 10.1029/RG018i001p00269
    [57] NAKAGAWA T, TACKLEY P J.Influence of magmatism on mantle cooling, surface heat flow and Urey ratio[J].Earth and Planetary Science Letters, 2012, 329:1-10. doi: 10.1016/j.epsl.2012.02.011
    [58] PAN B, CUI W.An overview of buckling and ultimate strength of spherical pressure hull under external pressure[J].Marine Structures, 2010, 23(3):227-240. doi: 10.1016/j.marstruc.2010.07.005
    [59] XU X L, GAO F. Experimental study on the strength and deformation quality of granite with effect of high temperature[C]//Applied Mechanics and Materials. Trans Tech Publications, 2012, 226: 1275-1278.
    [60] BÅTH M.Seismicity of the Tanzania region[J].Tectonophysics, 1975, 27(4):353-379. doi: 10.1016/0040-1951(75)90004-9
    [61] BÅTH M. Introduction to seismology[M]. Basel: Birkhauser Verlag, 1973: 127.
  • 加载中
图(1) / 表(4)
计量
  • 文章访问数:  8564
  • HTML全文浏览量:  3127
  • PDF下载量:  213
出版历程
  • 收稿日期:  2018-07-14
  • 修回日期:  2018-07-16

目录

    /

    返回文章
    返回