[1] |
SNYDER G J, TBERER E S. Complex thermoelectric materials [J]. Nature Materials, 2008, 7(2): 105–114. doi: 10.1038/nmat2090
|
[2] |
POUDEL B, HAO Q, MA Y, et al. High-thermoelectric performance of nanostructured bismuth antimony telluride bulk alloys [J]. Science, 2008, 320(5876): 634–638. doi: 10.1126/science.1156446
|
[3] |
BENNETT G. Space nuclear power: opening the final frontier [C]//4th International Energy Conversion Engineering Conference and Exhibit (IECEC), 2006: 4191.
|
[4] |
PRICE P J. Theory of transport effects in semiconductors: thermoelectricity [J]. Physical Review, 1956, 104(5): 1223–1239. doi: 10.1103/PhysRev.104.1223
|
[5] |
BHANDARI C M, ROWE D M. CRC handbook of thermoelectrics [M]. Boca Raton: CRC Press, 1995.
|
[6] |
FAN H, SU T, LI H, et al. Enhanced thermoelectric performance of PbSe Co-doped with Ag and Sb [J]. Journal of Alloys and Compounds, 2015, 639: 106–110. doi: 10.1016/j.jallcom.2015.03.117
|
[7] |
LIU W S, ZHANG B P, LI J F, et al. Enhanced thermoelectric properties in CoSb3-xTex alloys prepared by mechanical alloying and spark plasma sintering [J]. Journal of Applied Physics, 2007, 102(10): 103717. doi: 10.1063/1.2815671
|
[8] |
HU L P, ZHU T J, WANG Y G, et al. Shifting up the optimum figure of merit of p-type bismuth telluride-based thermoelectric materials for power generation by suppressing intrinsic conduction [J]. NPG Asia Materials, 2014, 6(2): e88. doi: 10.1038/am.2013.86
|
[9] |
ZHAO L D, ZHANG B P, LI J F, et al. Thermoelectric and mechanical properties of nano-SiC-dispersed Bi2Te3 fabricated by mechanical alloying and spark plasma sintering [J]. Journal of Alloys and Compounds, 2008, 455(1/2): 259–264.
|
[10] |
LI J, TAN Q, LI J F, et al. BiSbTe-based nanocomposites with high ZT: the effect of SiC nanodispersion on thermoelectric properties [J]. Advanced Functional Materials, 2013, 23(35): 4317–4323. doi: 10.1002/adfm.v23.35
|
[11] |
DUAN B, ZHAI P, WEN P, et al. Enhanced thermoelectric and mechanical properties of Te-substituted skutterudite via nano-TiN dispersion [J]. Scripta Materialia, 2012, 67(4): 372–375. doi: 10.1016/j.scriptamat.2012.05.028
|
[12] |
STEELE M C, ROSI F D. Thermal conductivity and thermoelectric power of germanium-silicon alloys [J]. Journal of Applied Physics, 1958, 29(11): 1517–1520. doi: 10.1063/1.1722984
|
[13] |
XU Z J, HU L P, YING P J, et al. Enhanced thermoelectric and mechanical properties of zone melted p-type (Bi, Sb)2Te3 thermoelectric materials by hot deformation [J]. Acta Materialia, 2015, 84: 385–392. doi: 10.1016/j.actamat.2014.10.062
|
[14] |
BATES H E, WEINSTEIN M. The preparation and properties of segmented lead telluride-silicon-germanium thermoelements: 19660062826 [R]. USA: NASA, 1966.
|
[15] |
LALONDE A D, PEI Y, WANG H, et al. Lead telluride alloy thermoelectrics [J]. Materials Today, 2011, 14(11): 526–532. doi: 10.1016/S1369-7021(11)70278-4
|
[16] |
HU Z, GAO S. Upper crustal abundances of trace elements: a revision and update [J]. Chemical Geology, 2008, 253(3/4): 205–221.
|
[17] |
RAVICH I U I. Semiconducting lead chalcogenides [M]//SEEGER K. Semiconductor Physics. Springer Science & Business Media, 1970:5.
|
[18] |
WANG H, PEI Y, LALONDE A D, et al. Heavily doped p-type pbse with high thermoelectric performance: an alternative for PbTe [J]. Advanced Materials, 2011, 23(11): 1366–1370. doi: 10.1002/adma.v23.11
|
[19] |
LEE Y, LO S H, CHEN C, et al. Contrasting role of antimony and bismuth dopants on the thermoelectric performance of lead selenide [J]. Nature Communications, 2014, 5: 3640. doi: 10.1038/ncomms4640
|
[20] |
PARKER D, SINGH D J. High-temperature thermoelectric performance of heavily doped PbSe [J]. Physical Review B, 2010, 82(3): 035204.
|
[21] |
PEI Y L, LIU Y. Electrical and thermal transport properties of Pb-based chalcogenides: PbTe, PbSe, and PbS [J]. Journal of Alloys and Compounds, 2012, 514(5): 40–44.
|
[22] |
FAN H T, SU T C, LI H T, et al. Enhanced low temperature thermoelectric performance and weakly temperature-dependent figure-of-merit values of PbTe-PbSe solid solutions [J]. Journal of Alloys and Compounds, 2016, 658: 885–890. doi: 10.1016/j.jallcom.2015.10.021
|