Meeting Location of Fragment and Shock Wave from Blast Fragmentation Warhead
-
摘要: 为研究破片式战斗部爆炸后破片和冲击波两种毁伤元的相遇位置,先通过ANSYS/LS-DYNA对破片式战斗部的爆炸过程进行数值计算,再通过试验的方法测量破片和冲击波相遇位置,验证了数值计算方法的合理性。在此基础上,分析了装填系数、破片质量、爆速和爆热对相遇位置的影响。结果表明:随着装填系数、破片质量、爆速和爆热的增加,相遇位置减小;装填系数增加31%,相遇位置距爆炸中心的距离减小11.5%;单枚破片质量增加1倍,相遇位置距爆炸中心的距离减小2.4%。Abstract: In order to study the meeting location of fragments and shock waves after fragmentation warhead explosions, ANSYS/LS-DYNA was first used to numerically calculate the explosion process of the fragmented warhead, and then the location where fragments meet shock wave was experimentally determined, validating the numerical method.On the basis of above results, the influence of k, m, QV and QT on the meeting location was analyzed.The results show that the meeting location decreases with the increase of k, m, QV and QT.More precisely, the k increases by 31%, the distance between the meeting position and the explosion center decreases by 11.5%, the m is doubled, and the distance between the meeting position and the explosion center is reduced by 2.4%.
-
Key words:
- fragmentation warhead /
- fragment /
- shock wave /
- meeting location
-
表 1 壳体和破片的主要材料参数表
Table 1. Material parameters of shell and fragments
Material ρ/(kg·m-3) E/GPa μ A/MPa B/MPa n m c/(m·s-1) S1 γ Alloy 2797 69.63 0.33 265 426 0.34 1 5280 1.4 2 Steel 7850 210 0.28 335 表 2 炸药材料参数及状态方程参数
Table 2. Material and equation of state (EOS) parameters for explosive
ρ/(kg·m-3) D/(m·s-1) A/GPa B/GPa R1 R2 ω pCJ/GPa V0 1780 8390 581.4 6.8 4.1 1 0.35 34 1 表 3 空气材料参数及状态方程参数
Table 3. Material and equation of state (EOS) parameters for air
ρ/(kg·m-3) C0/MPa C1 C2 C3 C4 C5 C6 V e0/MPa 1.25 -0.1 0 0 0 0.4 0.4 0 1 0.25 表 4 木块距战斗部距离
Table 4. Distance between wood blocks and warhead
Shot Distance/m Wood block 1 Wood block 2 Wood block 3 Wood block 4 Wood block 5 1 0.4 0.6 1.2 1.6 2.0 2 1.6 2.0 2.4 2.8 3.2 3 1.6 2.0 2.8 3.2 3.6 表 5 冲击波到达时间
Table 5. Arrival time of blast wave
Shot Time/ms Wood block 1 Wood block 2 Wood block 3 Wood block 4 Wood block 5 1 0.752 1.832 2.586 2 1.791 2.334 3.009 3.825 4.771 3 2.876 3.762 4.689 表 6 冲击波到达平均时间
Table 6. Average arrival time of blast wave
Distance/m Time/ms 1.2 0.752 1.6 1.812 2.0 2.599 2.4 3.009 2.8 3.794 3.2 4.730 表 7 计算超压值与试验超压值对比
Table 7. Comparison of the numerical and experimental overpressure results
Distance/m Over pressure/MPa Error/% Test Numerical 2.5 0.356 0.3557 8.43 4.3 0.086 0.0912 6.05 6.2 0.04565 0.0489 7.12 8.0 0.0256 0.0241 5.86 10.0 0.0199 0.0217 9.05 表 8 战斗部及破片参数(L=260 mm,R=96 mm)
Table 8. Parameters of warhead and fragment (L=260 mm, R=96 mm)
Arrangement k/% m/g t/mm h/mm Explosive 37.31 6.00 9 10 8701 1 40.33 6.00 8 10 8701 43.73 6.00 7 10 8701 52.34 2.12 5 4 8701 52.34 4.24 5 6 8701 2 52.34 6.00 5 8.2 8701 52.34 8.48 5 9.6 8701 52.34 12.00 5 12 8701 3 6.00 5 8.2 8701/TNT/B/HMX 表 9 不同类型炸药的相关参数
Table 9. Parameters of different explosives
Explosive ρ/(kg·m-3) QV/(m·s-1) QT/(J·g-1) Explosive mass/kg TNT equivalent k/% TNT 1.58 6856 4225 11.00 1.00 44.51 B 1.71 7680 4690 12.37 1.11 50.05 8701 1.72 7980 5300 11.95 1.25 52.34 HMX 1.89 9100 6188 13.13 1.46 58.30 -
[1] 郑红伟, 陈长海, 侯海量, 等.破片尺寸对空爆冲击波及破片传播过程的影响仿真分析[J].中国舰船研究, 2017, 12(6):73-80. doi: 10.3969/j.issn.1673-3185.2017.06.011ZHENG H W, CHEN C H, HOU H L, et al.Simulation analysis of effects of single fragment size on air-blast wave andfragment propagation[J]. Chinese Journal of Ship Research, 2017, 12(6):73-80. doi: 10.3969/j.issn.1673-3185.2017.06.011 [2] 陈长海, 侯海亮, 朱锡, 等.破片式战斗部空中爆炸下冲击波与破片的耦合作用[J].高压物理学报, 2018, 32(1):015104. http://www.gywlxb.cn/CN/abstract/abstract2043.shtmlCHEN C H, HOU H L, ZHU X, et al.Coupling action spans for air-blast waves and fragments by fragmentation warheads exploding in air[J]. Chineses Journal of High Pressure Physics, 2018, 32(1):015104. http://www.gywlxb.cn/CN/abstract/abstract2043.shtml [3] 龚超安, 陈智刚, 印立魁.杀爆战斗部破片与冲击波运动规律研究[J].弹箭与制导学报, 2016, 36(2):33-36. http://d.old.wanfangdata.com.cn/Periodical/djyzdxb201602010GONG C A, CHEN Z G, YIN L K.Research on motion law of fragment and shock wave of blast fragmentation warhead[J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2016, 36(2):33-36. http://d.old.wanfangdata.com.cn/Periodical/djyzdxb201602010 [4] LLOYD R M.Conventional warhead systems physics and engineering design[M]. Reston, VA:American Institute of Aeronautics and Astronautics, 1998:256-261. [5] 陈长海, 朱锡, 侯海量.破片式战斗部空中爆炸毁伤载荷研究进展[J].中国造船, 2016, 57(4):197-214. doi: 10.3969/j.issn.1000-4882.2016.04.022CHEN C H, ZHU X, HOU H L.Research advance in damage load of fragmentized warhead exploded in air[J]. Shipbuilding of China, 2016, 57(4):197-214. doi: 10.3969/j.issn.1000-4882.2016.04.022 [6] 刘刚.破片和冲击波对直升机结构联合作用的数值模拟研究[D].南京: 南京理工大学, 2013. http://cdmd.cnki.com.cn/Article/CDMD-10288-1013166483.htmLIU G.Numerical simulation of joint effect of fragments and shockwaves on helicopter structure[D]. Nanjing: Nanjing University of Science and Technology, 2013. http://cdmd.cnki.com.cn/Article/CDMD-10288-1013166483.htm [7] 梁为民, 张晓忠, 梁仕发, 等.结构内爆炸破片与冲击波运动规律试验研究[J].兵工学报, 2009, 30(增刊2):223-227. http://d.old.wanfangdata.com.cn/Conference/7151735LIANG W M, ZHANG X Z, LIANG S F, et al.Experimental research on motion law of fragment and shock wave under the condition of internal explosion[J]. Acta Armamentarii, 2009, 30(Suppl 2):223-227. http://d.old.wanfangdata.com.cn/Conference/7151735 [8] GRISARO H Y, DANCYGIER A N.Characteristics of combined blast and fragments loading[J]. International Journal of Impact Engineering, 2018, 116:51-64. doi: 10.1016/j.ijimpeng.2018.02.004 [9] NYSTRÖM U, GYLLTOFT K.Numerical studies of the combined effects of blast and fragment loading[J]. International Journal of Impact Engineering, 2009, 36(8):995-1005. doi: 10.1016/j.ijimpeng.2009.02.008 [10] 刘刚, 李向东, 张媛.破片和冲击波对直升机旋翼联合毁伤仿真研究[J].计算机仿真, 2013, 30(6):68-71. doi: 10.3969/j.issn.1006-9348.2013.06.016LIU G, LI X D, ZHANG Y.Numerical simulation of combined damage of fragments and shock wave on helicopter rotor[J]. Computer Simulation, 2013, 30(6):68-71. doi: 10.3969/j.issn.1006-9348.2013.06.016 [11] 凌琦, 何勇, 何源, 等.扇形复合装药驱动破片定向飞散的数值模拟[J].高压物理学报, 2017, 31(5):557-565. http://www.gywlxb.cn/CN/abstract/abstract1995.shtmlLING Q, HE YONG, HE YUAN, et al.Numerical simulation of directed scatering of fragments[J]. Chinese Journal of High Pressure Physics, 2017, 31(5):557-565. http://www.gywlxb.cn/CN/abstract/abstract1995.shtml