Effect of Defective Graphene on Mechanical Properties of Reinforced Resin Matrix Composites
-
摘要: 基于分子结构力学和多尺度方法,采用有限元商业软件ABAQUS,针对石墨烯存在的几种缺陷,构建了含有不同数量的双原子空缺缺陷和Stone-Wales(S-W)缺陷的石墨烯增强环氧树脂复合材料的有限元模型,研究了石墨烯的缺陷在不同石墨烯体积分数下对复合材料弹性模量以及界面层应力传递的影响。数值模拟结果表明,随着石墨烯体积分数的增加,完美石墨烯和缺陷石墨烯增强环氧树脂复合材料弹性模量均呈现线性上升。其次,缺陷种类和数量之间的结果对比表明,空缺缺陷会明显降低复合材料的弹性模量,且随着缺陷数量的增加,变化更明显。而S-W缺陷在一定程度上增加了复合材料的杨氏模量,对于剪切模量,则出现下降趋势。另外,界面层的应力传递一定程度上反映了缺陷对复合材料的影响。Abstract: Based on the molecular structural mechanics and multi-scale method, the finite element model of graphene reinforced epoxy resin composite with different number of vacancy defects and Stone-Wales (S-W) defects was constructed by using the finite element commercial software ABAQUS.The effects of graphene defects on the elastic modulus and interfacial stress transfer of composites with different volume fractions of graphene were investigated.The numerical simulation results show that the elastic modulus of the perfect graphene and the defective graphene reinforced epoxy resin composite increases linearly with the increase of the volume fraction of graphene.Secondly, the comparison between the number of defects and the type of defects shows that the vacancy defect can obviously reduce the modulus of elasticity of the composite, and the change is more obvious with the increase of the number of defects.However, the S-W defect increases the Young's modulus of the composites to a certain extent, but the shear modulus decreases.In addition, the stress transfer from the interface layer to some extent reflects the effect of defects on the composites.
-
Key words:
- graphene /
- defect /
- composites /
- mechanical properties /
- multi-scale method
-
表 1 等效梁单元的材料属性
Table 1. Material properties of the equivalent beam element
d/nm L/nm kr/(μN·rad-1) kθ/(aN·m·rad-2) kτ/(aN·m·rad-2) E/GPa G/GPa 0.146 0.142 0.652 0.875 0.278 5 780 878 表 2 石墨烯的材料属性参数
Table 2. Material property parameters of graphene
Ex/GPa Ey/GPa Ez/GPa ν12 ν13 ν23 Gxy/GPa Gxz/GPa Gyz/GPa 730 709 58.5 0.46 0.2 0.2 434 7.5 7.5 -
[1] NOVOSELOV K S, GEIM A K, MOROZOV S V, et al.Electric field effect in atomically thin carbon films[J].Science, 2004, 306(5696):666-669. doi: 10.1126/science.1102896 [2] BALANDIN A A, GHOSH S, BAO W Z, et al.Superior thermal conductivity of single-layer graphene[J].Nano Letters, 2008, 8(3):902-907. doi: 10.1021/nl0731872 [3] 刘晓毅, 王奉超, 吴恒安.石墨烯及其复合材料纳米力学研究进展[J].固体力学学报, 2016, 37(5):398-420. http://www.cnki.com.cn/Article/CJFDTOTAL-GTLX201605002.htmLIU X Y, WANG F C, WU H A.Progress in nanomechanical research of graphene and its composites[J].Acta Mechanica Solida Sinica, 2016, 37(5):398-420. http://www.cnki.com.cn/Article/CJFDTOTAL-GTLX201605002.htm [4] LEE C G, WEI X D, KYSAR J W, et al.Measurement of the elastic properties and intrinsic strength of monolayer grapheme[J].Science, 2008, 321(5887):385-388. doi: 10.1126/science.1157996 [5] RESKETI N A, AMIRI H A, DEHESTANI M.Effects of size and shape on elastic constants of graphene sheet[J].Structures, 2018, 13:131-138. doi: 10.1016/j.istruc.2017.12.005 [6] VUL A Y, SOKOLOV V I.Nanocarbon studies in Russia:from fullerene to nanotubes and nanodiamonds[J].Nanotechnologies in Russia, 2009, 4(7/8):397-414. doi: 10.1134/S1995078009070027 [7] RAO C N R, BISWAS K, SUBRAHMANYAM K S, et al.Graphene, the new nanocarbon[J].Journal of Materials Chemistry, 2009, 19(17):2457-2469. doi: 10.1039/b815239j [8] SPANOS K N, GEORGANTZINOS S K, ANIFANTIS N K.Mechanical properties of graphene nanocomposites:a multiscale finite element prediction[J].Composite Structures, 2015, 132:536-544. doi: 10.1016/j.compstruct.2015.05.078 [9] SPANOS K N, ANIFANTIS N K.Finite element prediction of stress transfer in graphene nanocomposites:the interface effect[J].Composite Structures, 2016, 154:269-276. doi: 10.1016/j.compstruct.2016.07.058 [10] GIANNOPOULOS G I, KALLIVOKAS I G.Mechanical properties of graphene based nanocomposites incorporating a hybrid interphase[J].Finite Element in Analysis and Design, 2014, 90:31-40. doi: 10.1016/j.finel.2014.06.008 [11] PAPAGEORGIOU D G, KINIOCH I A, YOUNG R J.Mechanical properties of graphene and graphene-based nanocomposites[J].Progress in Materials Science, 2017, 90:75-127. doi: 10.1016/j.pmatsci.2017.07.004 [12] 孙帅.石墨烯缺陷的特点与应用研究[D].天津: 天津大学, 2015: 10-30.SUN S.Study on the characteristics and application of graphene defects[D].Tianjin: Tianjin University, 2015: 10-30. [13] 韩同伟, 贺鹏飞, 王健, 等.单层石墨烯薄膜拉伸变形的分子动力学模拟[J].新型炭材料, 2010, 25(4):261-266. http://d.old.wanfangdata.com.cn/Periodical/xxtcl201004004HAN T W, HE P F, WANG J, et al.Molecular dynamics simulation of tensile deformation of monolayer graphene films[J].New Carbon Materials, 2010, 25(4):261-266. http://d.old.wanfangdata.com.cn/Periodical/xxtcl201004004 [14] 韩同伟, 施元君, 贺鹏飞, 等.Stone-Wales拓扑缺陷对石墨烯拉伸力学性能的影响[J].固体力学学报, 2011, 32(6):619-624. http://d.old.wanfangdata.com.cn/Periodical/gtlxxb201106011HAN T W, SHI Y J, HE P F, et al.Effect of Stone-Wales topological defects on tensile mechanical properties of graphene[J].Acta Mechanica Solida Sinica, 2011, 32(6):619-624. http://d.old.wanfangdata.com.cn/Periodical/gtlxxb201106011 [15] 韩同伟, 贺鹏飞, 王健, 等.空位缺陷对单层石墨烯薄膜拉伸力学性能的影响[J].同济大学学报, 2010, 38(8):1210-1214. doi: 10.3969/j.issn.0253-374x.2010.08.020HAN T W, HE P F, WANG J, et al.Effect of vacancy defects on tensile mechanical properties of single layer graphene films[J].Journal of Tongji University, 2010, 38(8):1210-1214. doi: 10.3969/j.issn.0253-374x.2010.08.020 [16] LI C Y, CHOU T W.A structural mechanics approach for the analysis of carbon nanotubes[J].International Journal of Solids and Structures, 2003, 40(10):2487-2499. doi: 10.1016/S0020-7683(03)00056-8 [17] LI C Y, CHOU T W.Elastic moduli of multi-walled carbon nanotubes and the effect of van der Waals forces[J].Composites Science and Technology, 2003, 63(11):1517-1524. doi: 10.1016/S0266-3538(03)00072-1