含缺陷的石墨烯对增强树脂基复合材料力学性能的影响

宋鲁彬 郭章新 李忠贵 栾云博 赵聃 张祺

宋鲁彬, 郭章新, 李忠贵, 栾云博, 赵聃, 张祺. 含缺陷的石墨烯对增强树脂基复合材料力学性能的影响[J]. 高压物理学报, 2018, 32(6): 064101. doi: 10.11858/gywlxb.20180586
引用本文: 宋鲁彬, 郭章新, 李忠贵, 栾云博, 赵聃, 张祺. 含缺陷的石墨烯对增强树脂基复合材料力学性能的影响[J]. 高压物理学报, 2018, 32(6): 064101. doi: 10.11858/gywlxb.20180586
SONG Lubin, GUO Zhangxin, LI Zhonggui, LUAN Yunbo, ZHAO Dan, ZHANG Qi. Effect of Defective Graphene on Mechanical Properties of Reinforced Resin Matrix Composites[J]. Chinese Journal of High Pressure Physics, 2018, 32(6): 064101. doi: 10.11858/gywlxb.20180586
Citation: SONG Lubin, GUO Zhangxin, LI Zhonggui, LUAN Yunbo, ZHAO Dan, ZHANG Qi. Effect of Defective Graphene on Mechanical Properties of Reinforced Resin Matrix Composites[J]. Chinese Journal of High Pressure Physics, 2018, 32(6): 064101. doi: 10.11858/gywlxb.20180586

含缺陷的石墨烯对增强树脂基复合材料力学性能的影响

doi: 10.11858/gywlxb.20180586
基金项目: 

国家自然科学基金 11602160

国家自然科学基金 21501129

国家自然科学基金 11502155

山西省高等学校创新项目 2017117

西安交通大学机械结构强度与振动国家重点实验室开放课题 SV2017-KF-01

山西省自然科学青年基金 201601D021026

山西省"1331工程"重点创新团队项目 

详细信息
    作者简介:

    宋鲁彬(1993-), 男, 硕士研究生, 主要从事复合材料及其结构的力学性能研究. E-mail:1978193041@qq.com

    通讯作者:

    郭章新(1983-), 男, 博士, 讲师, 主要从事复合材料及其结构的力学性能研究. E-mail:woxintanran215@163.com

  • 中图分类号: O341

Effect of Defective Graphene on Mechanical Properties of Reinforced Resin Matrix Composites

  • 摘要: 基于分子结构力学和多尺度方法,采用有限元商业软件ABAQUS,针对石墨烯存在的几种缺陷,构建了含有不同数量的双原子空缺缺陷和Stone-Wales(S-W)缺陷的石墨烯增强环氧树脂复合材料的有限元模型,研究了石墨烯的缺陷在不同石墨烯体积分数下对复合材料弹性模量以及界面层应力传递的影响。数值模拟结果表明,随着石墨烯体积分数的增加,完美石墨烯和缺陷石墨烯增强环氧树脂复合材料弹性模量均呈现线性上升。其次,缺陷种类和数量之间的结果对比表明,空缺缺陷会明显降低复合材料的弹性模量,且随着缺陷数量的增加,变化更明显。而S-W缺陷在一定程度上增加了复合材料的杨氏模量,对于剪切模量,则出现下降趋势。另外,界面层的应力传递一定程度上反映了缺陷对复合材料的影响。

     

  • 图  石墨烯六边形晶格与有限元模型的等效替代

    Figure  1.  Equivalent substitution of graphene hexagon lattice with finite element model

    图  石墨烯C-C键与梁单元之间的变形等效

    Figure  2.  Deformation equivalence between the C-C bond of graphene and the beam element

    图  含有9个双原子空缺缺陷(a)和9个S-W缺陷(b)的有限元模型

    Figure  3.  Finite element model containing nine diatomic vacancy defects and nine S-W defects

    图  石墨烯增强环氧树脂基复合材料的代表性体积单元

    Figure  4.  Representative volume element of graphene reinforced epoxy matrix composites

    图  不同尺寸石墨烯的杨氏模量和剪切模量

    Figure  5.  Young's modulus and shear modulus of graphene with different sizes

    图  无缺陷石墨烯增强环氧树脂复合材料的杨氏模量和剪切模量

    Figure  6.  Young's modulus and shear modulus of perfect graphene reinforced epoxy composites

    图  含有不同数量空缺缺陷石墨烯复合材料的界面层应力云图

    Figure  7.  Stress cloud map of interface layer containing different vacancy defects graphene composites

    图  含有不同数量S-W缺陷石墨烯复合材料的界面层应力云图

    Figure  8.  Stress cloud map of interface layer containing different S-W defects graphene composites

    图  不同缺陷情况杨氏模量ExEy随体积分数的变化

    Figure  9.  Variation of Young's modulus Ex and Ey with volume fraction under different defects

    图  10  不同缺陷情况剪切模量GxyGxz随体积分数的变化

    Figure  10.  Variation of Young's modulus Gxy and Gxz with volume fraction under different defects

    图  11  界面层的正应力σx和切应力τxy随界面层位置的变化

    Figure  11.  Variation of normal stress σx and shear stress τxy at the interface layer with the position of the interface layer

    表  1  等效梁单元的材料属性

    Table  1.   Material properties of the equivalent beam element

    d/nm L/nm kr/(μN·rad-1) kθ/(aN·m·rad-2) kτ/(aN·m·rad-2) E/GPa G/GPa
    0.146 0.142 0.652 0.875 0.278 5 780 878
    下载: 导出CSV

    表  2  石墨烯的材料属性参数

    Table  2.   Material property parameters of graphene

    Ex/GPa Ey/GPa Ez/GPa ν12 ν13 ν23 Gxy/GPa Gxz/GPa Gyz/GPa
    730 709 58.5 0.46 0.2 0.2 434 7.5 7.5
    下载: 导出CSV
  • [1] NOVOSELOV K S, GEIM A K, MOROZOV S V, et al.Electric field effect in atomically thin carbon films[J].Science, 2004, 306(5696):666-669. doi: 10.1126/science.1102896
    [2] BALANDIN A A, GHOSH S, BAO W Z, et al.Superior thermal conductivity of single-layer graphene[J].Nano Letters, 2008, 8(3):902-907. doi: 10.1021/nl0731872
    [3] 刘晓毅, 王奉超, 吴恒安.石墨烯及其复合材料纳米力学研究进展[J].固体力学学报, 2016, 37(5):398-420. http://www.cnki.com.cn/Article/CJFDTOTAL-GTLX201605002.htm

    LIU X Y, WANG F C, WU H A.Progress in nanomechanical research of graphene and its composites[J].Acta Mechanica Solida Sinica, 2016, 37(5):398-420. http://www.cnki.com.cn/Article/CJFDTOTAL-GTLX201605002.htm
    [4] LEE C G, WEI X D, KYSAR J W, et al.Measurement of the elastic properties and intrinsic strength of monolayer grapheme[J].Science, 2008, 321(5887):385-388. doi: 10.1126/science.1157996
    [5] RESKETI N A, AMIRI H A, DEHESTANI M.Effects of size and shape on elastic constants of graphene sheet[J].Structures, 2018, 13:131-138. doi: 10.1016/j.istruc.2017.12.005
    [6] VUL A Y, SOKOLOV V I.Nanocarbon studies in Russia:from fullerene to nanotubes and nanodiamonds[J].Nanotechnologies in Russia, 2009, 4(7/8):397-414. doi: 10.1134/S1995078009070027
    [7] RAO C N R, BISWAS K, SUBRAHMANYAM K S, et al.Graphene, the new nanocarbon[J].Journal of Materials Chemistry, 2009, 19(17):2457-2469. doi: 10.1039/b815239j
    [8] SPANOS K N, GEORGANTZINOS S K, ANIFANTIS N K.Mechanical properties of graphene nanocomposites:a multiscale finite element prediction[J].Composite Structures, 2015, 132:536-544. doi: 10.1016/j.compstruct.2015.05.078
    [9] SPANOS K N, ANIFANTIS N K.Finite element prediction of stress transfer in graphene nanocomposites:the interface effect[J].Composite Structures, 2016, 154:269-276. doi: 10.1016/j.compstruct.2016.07.058
    [10] GIANNOPOULOS G I, KALLIVOKAS I G.Mechanical properties of graphene based nanocomposites incorporating a hybrid interphase[J].Finite Element in Analysis and Design, 2014, 90:31-40. doi: 10.1016/j.finel.2014.06.008
    [11] PAPAGEORGIOU D G, KINIOCH I A, YOUNG R J.Mechanical properties of graphene and graphene-based nanocomposites[J].Progress in Materials Science, 2017, 90:75-127. doi: 10.1016/j.pmatsci.2017.07.004
    [12] 孙帅.石墨烯缺陷的特点与应用研究[D].天津: 天津大学, 2015: 10-30.

    SUN S.Study on the characteristics and application of graphene defects[D].Tianjin: Tianjin University, 2015: 10-30.
    [13] 韩同伟, 贺鹏飞, 王健, 等.单层石墨烯薄膜拉伸变形的分子动力学模拟[J].新型炭材料, 2010, 25(4):261-266. http://d.old.wanfangdata.com.cn/Periodical/xxtcl201004004

    HAN T W, HE P F, WANG J, et al.Molecular dynamics simulation of tensile deformation of monolayer graphene films[J].New Carbon Materials, 2010, 25(4):261-266. http://d.old.wanfangdata.com.cn/Periodical/xxtcl201004004
    [14] 韩同伟, 施元君, 贺鹏飞, 等.Stone-Wales拓扑缺陷对石墨烯拉伸力学性能的影响[J].固体力学学报, 2011, 32(6):619-624. http://d.old.wanfangdata.com.cn/Periodical/gtlxxb201106011

    HAN T W, SHI Y J, HE P F, et al.Effect of Stone-Wales topological defects on tensile mechanical properties of graphene[J].Acta Mechanica Solida Sinica, 2011, 32(6):619-624. http://d.old.wanfangdata.com.cn/Periodical/gtlxxb201106011
    [15] 韩同伟, 贺鹏飞, 王健, 等.空位缺陷对单层石墨烯薄膜拉伸力学性能的影响[J].同济大学学报, 2010, 38(8):1210-1214. doi: 10.3969/j.issn.0253-374x.2010.08.020

    HAN T W, HE P F, WANG J, et al.Effect of vacancy defects on tensile mechanical properties of single layer graphene films[J].Journal of Tongji University, 2010, 38(8):1210-1214. doi: 10.3969/j.issn.0253-374x.2010.08.020
    [16] LI C Y, CHOU T W.A structural mechanics approach for the analysis of carbon nanotubes[J].International Journal of Solids and Structures, 2003, 40(10):2487-2499. doi: 10.1016/S0020-7683(03)00056-8
    [17] LI C Y, CHOU T W.Elastic moduli of multi-walled carbon nanotubes and the effect of van der Waals forces[J].Composites Science and Technology, 2003, 63(11):1517-1524. doi: 10.1016/S0266-3538(03)00072-1
  • 加载中
图(11) / 表(2)
计量
  • 文章访问数:  7119
  • HTML全文浏览量:  2925
  • PDF下载量:  21
出版历程
  • 收稿日期:  2018-06-20
  • 修回日期:  2018-07-06

目录

    /

    返回文章
    返回