串联战斗部不同介质组合的隔爆能力

刘宏杰 王伟力 苗润 吴世永 王俊华

刘宏杰, 王伟力, 苗润, 吴世永, 王俊华. 串联战斗部不同介质组合的隔爆能力[J]. 高压物理学报, 2019, 33(1): 015104. doi: 10.11858/gywlxb.20180585
引用本文: 刘宏杰, 王伟力, 苗润, 吴世永, 王俊华. 串联战斗部不同介质组合的隔爆能力[J]. 高压物理学报, 2019, 33(1): 015104. doi: 10.11858/gywlxb.20180585
LIU Hongjie, WANG Weili, MIAO Run, WU Shiyong, WANG Junhua. Explosive Interruption of Tandem Warhead with Different Multilayer Structures[J]. Chinese Journal of High Pressure Physics, 2019, 33(1): 015104. doi: 10.11858/gywlxb.20180585
Citation: LIU Hongjie, WANG Weili, MIAO Run, WU Shiyong, WANG Junhua. Explosive Interruption of Tandem Warhead with Different Multilayer Structures[J]. Chinese Journal of High Pressure Physics, 2019, 33(1): 015104. doi: 10.11858/gywlxb.20180585

串联战斗部不同介质组合的隔爆能力

doi: 10.11858/gywlxb.20180585
详细信息
    作者简介:

    刘宏杰(1993-),男,硕士研究生,主要从事弹药设计与目标毁伤评估研究. E-mail: 1300202650@qq.com

    通讯作者:

    王伟力(1962-),男,教授,博士生导师,主要从事战斗部毁伤效应研究. E-mail: 858769430@qq.com

  • 中图分类号: O382; TJ410.3

Explosive Interruption of Tandem Warhead with Different Multilayer Structures

  • 摘要: 为了有效提升串联切割战斗部隔爆结构衰减爆炸冲击波的性能,解决前级聚能装药结构与后级随进弹的匹配及隔爆问题,在前级切割器和后级随进弹之间加装隔爆结构,使用有限元分析软件ANSYS/LS-DYNA建立模型,进行不同组合结构隔爆性能的数值模拟,比较隔爆能力。模拟结果表明:前级装药起爆后,爆炸冲击波首先向后级随进弹头靠里区域汇聚,而不是向弹头尖端区域汇聚,因此可以适当减薄外层金属隔爆介质头部尖端区域;将外层金属由硬质钢改成铝时,后端壳体应力峰值的变化很小,故确定外层金属介质为铝;铝-聚脲的隔爆能力优于铝-泡沫铝结构,最终确定“软”隔爆介质为聚脲。通过调整铝和聚脲层的厚度,确定了最佳隔爆参数,能够满足实际应用。

     

  • 图  反射波与透射波Hugoniot关系计算曲线

    Figure  1.  Hugoniot curves of reflection and transmission wave

    图  串联战斗部及隔爆结构有限元模型

    Figure  2.  Finite element model of tandem warhead and explosive interruption structure

    图  工况I中装药压力及壳体应力分析

    Figure  3.  Loading pressure and shell stress of working condition I

    图  典型时刻外层钢介质的应力云图

    Figure  4.  Stress nephogram of steel at typical times

    图  工况II装药压力及壳体应力分析

    Figure  5.  Loading pressure and shell stress of working condition II

    图  工况III装药压力及壳体应力

    Figure  6.  Loading pressure and shell stress of working condition III

    图  工况IV装药压力及壳体应力

    Figure  7.  Loading pressure and shell stress of working condition IV

    图  工况V装药压力及壳体应力

    Figure  8.  Loading pressure and shell stress of working condition V

    图  后级随进弹加速度-时间变化曲线

    Figure  9.  Acceleration vs. time for the following stage’s incoming projectile

    图  10  后级随进弹速度-时间变化曲线

    Figure  10.  Velocity vs. time for the following stage’s incoming projectile

    图  11  串联战斗部及改进隔爆结构有限元模型

    Figure  11.  Finite element model of tandem warhead and improved explosive interruption structure

    图  12  工况I′装药压力及壳体应力

    Figure  12.  Loading pressure and shell stress of working condition I′

    图  13  工况II′装药压力及壳体应力分析

    Figure  13.  Loading pressure and shell stress of working condition II′

    图  14  工况III′装药压力及壳体应力分析

    Figure  14.  Loading pressure and shell stress of working condition III′

    图  15  工况IV′装药压力及壳体应力分析

    Figure  15.  Loading pressure and shell stress of working condition IV′

    图  16  后级随进弹加速度-时间变化曲线

    Figure  16.  Acceleration vs. time for the following stage’s incoming projectile

    图  17  后级随进弹加速度-时间曲线

    Figure  17.  Velocity vs. time for the following stage’s incoming projectile

    表  1  B炸药材料参数

    Table  1.   Material parameters of composition B

    ρ/(g·cm-3) D/(m·s-1) pCJ/GPa A/GPa B/GPa R1 R2 ω E0/GPa V0
    1.713 7 500 28.6 524.2 7.678 4.2 1.1 0.34 8.499 1.0
    下载: 导出CSV

    表  2  30CrMnSiNi2A钢和金属铝计算参数

    Table  2.   Material performance parameters of 30CrMnSiNi2A steel and aluminum

    Material AJC/MPa BJC/MPa n C m Tm/K T0/K S1 γ0 a
    Steel 1 280 420 0.30 0.030 1.00 1 793 294 1.490 2.17 0.46
    Al 265 426 0.34 0.015 1.00 775 294 1.345 2.13 0.10
    下载: 导出CSV

    表  3  不同工况及简便书写方式

    Table  3.   Different conditions and indications

    Condition Material
    A B C D
    Steel Polyurea Aluminum foam Aluminum
    Aluminum Polyurea Aluminum foam Aluminum
    Aluminum Aluminum foam Aluminum foam Aluminum
    Aluminum Aluminum foam Aluminum foam Aluminum foam
    Aluminum Polyurea Polyurea Polyurea
    下载: 导出CSV

    表  4  改进结构

    Table  4.   Improved structures

    Condition Material
    A B C
    Ⅰ′ Steel Aluminum Polyurea
    Ⅱ′ Steel Aluminum Aluminum foam
    Ⅲ′ Aluminum Aluminum Polyurea
    Ⅳ′ Aluminum Aluminum Polyurea(2 cm)
    下载: 导出CSV
  • [1] LEBLANC J, SHILLINGS C, GAUCH E, et al. Near field underwater explosion response of polyurea coated composite plates [J]. Experimental Mechanics, 2016, 56(4): 569–581. doi: 10.1007/s11340-015-0071-8
    [2] HARIS A, LEE H P, TAN V B C. An experimental study on shock wave mitigation capability of polyurea and shear thickening fluid based suspension pads [J]. Defence Technology, 2018, 14(1): 12–18. doi: 10.1016/j.dt.2017.08.004
    [3] DAI L, WU C, AN F, et al. Experimental investigation of polyurea-coated steel plates at underwater explosive loading [J]. Advances in Materials Science and Engineering, 2018: 1264276.
    [4] 曾必强, 姜春兰, 严翰新, 等. 串联攻坚战斗部前级爆轰场对随进弹随进影响分析 [J]. 兵工学报, 2010(Suppl 1): 162–166

    ZENG B Q, JIANG C L, YAN H X, et al. Analysis for effects of precursory detonation field on projectile following course in tandem warhead [J]. Acta Armamentarii, 2010(Suppl 1): 162–166
    [5] 姜夕博, 饶国宁, 徐森, 等. 冲击波在有机玻璃中衰减特性的数值模拟与实验研究 [J]. 南京理工大学学报(自然科学版), 2012, 36(6): 1059–1064 doi: 10.3969/j.issn.1005-9830.2012.06.028

    JIANG X B, RAO G N, XU S, et al. Numerical simulation and experimental research on shock wave attenuation properties in PMMA [J]. Journal of Nanjing University of Science and Technology, 2012, 36(6): 1059–1064 doi: 10.3969/j.issn.1005-9830.2012.06.028
    [6] 徐森, 刘大斌, 彭金华, 等. 药柱冲击波在有机玻璃中的衰减特性研究 [J]. 高压物理学报, 2010, 24(6): 431–437 doi: 10.11858/gywlxb.2010.06.005

    XU S, LIU D B, PENG J H, et al. Study on the shock wave attenuation of the booster charge in the PMMA gap [J]. Chinese Journal of High Pressure Physics, 2010, 24(6): 431–437 doi: 10.11858/gywlxb.2010.06.005
    [7] 侯海周, 彭金华, 胡毅亭. 爆炸冲击波在酚醛层压材料中衰减特性的实验研究 [J]. 火工品, 2016(2): 13–16 doi: 10.3969/j.issn.1003-1480.2016.02.005

    HOU H Z, PENG J H, HU Y T. Experimental study of shock wave attenuation properties in phenolic cotton fabric material [J]. Initiators & Pyrotechnics, 2016(2): 13–16 doi: 10.3969/j.issn.1003-1480.2016.02.005
    [8] TEDESCO J W, LANDIS D W. Wave propagation through layered systems [J]. Computers & Structures, 1989, 32(3/4): 625–638.
    [9] PETEL O E, JETTÉ F X, GOROSHIN S, et al. Blast wave attenuation through a composite of varying layer distribution [J]. Shock Waves, 2011, 21(3): 215–224. doi: 10.1007/s00193-010-0295-6
    [10] 石少卿, 刘仁辉, 汪敏. 钢板-泡沫铝-钢板新型复合结构降低爆炸冲击波性能研究 [J]. 振动与冲击, 2008, 27(4): 143–146 doi: 10.3969/j.issn.1000-3835.2008.04.037

    SHI S Q, LIU R H, WANG M. Shock wave reduction behavior of a new compound structure composed of a foam aluminum layer between two steel plates [J]. Journal of Vibration and Shock, 2008, 27(4): 143–146 doi: 10.3969/j.issn.1000-3835.2008.04.037
    [11] 董永香, 冯顺山, 李学林. 爆炸波在硬-软-硬三明治介质中传播特性的数值分析 [J]. 弹道学报, 2007, 19(1): 59–63 doi: 10.3969/j.issn.1004-499X.2007.01.017

    DONG Y X, FENG S S, LI X L. Numerical analysis of propagation characteristics of explosive wave in the hard-soft-hard sandwich media [J]. Journal of Ballistics, 2007, 19(1): 59–63 doi: 10.3969/j.issn.1004-499X.2007.01.017
    [12] 陈闯, 王晓鸣, 李文彬, 等. 多层介质阻抗匹配对隔爆效果的影响 [J]. 振动与冲击, 2014, 33(17): 105–110

    CHEN C, WANG X M, LI W B, et al. Influence of multilayered media impedance matching on explosion interruption effect [J]. Journal of Vibration and Shock, 2014, 33(17): 105–110
    [13] 北京工业学院八系. 爆炸及其作用 [M]. 北京: 国防工业出版社, 1994: 105-112.
    [14] 孙承纬. 爆炸物理学 [M]. 北京: 科学出版社, 2011: 205-207.
    [15] 宋博, 胡时胜, 王礼立. 分层材料的不同排列次序对透射冲击波强度的影响 [J]. 兵工学报, 2000, 21(3): 272–274 doi: 10.3321/j.issn:1000-1093.2000.03.021

    SONG B, HU S S, WANG L L. Influence on the transmitted intensity of shock wave through different tactic orders of layered materials [J]. Acta Armamentarii, 2000, 21(3): 272–274 doi: 10.3321/j.issn:1000-1093.2000.03.021
    [16] 汪文革, 杨世军, 韩永要, 等. 基于ANSYS/LS-DYNA的聚能射流侵彻装甲钢的有限元分析 [J]. 兵工自动化, 2008, 27(3): 39–41 doi: 10.3969/j.issn.1006-1576.2008.03.015

    WANG W G, YANG S J, HAN Y Y, et al. Finite element analysis of shaped charge jet penetrating into target based on ANSYS/LS-DYNA [J]. Ordnance Industry Automation, 2008, 27(3): 39–41 doi: 10.3969/j.issn.1006-1576.2008.03.015
    [17] TOGAMI T C, BAKER W E, FORRESTAL M J. A split Hopkinson bar technique to evaluate the performance of accelerometers [J]. Journal of Applied Mechanics, 1996, 63(2): 353–356. doi: 10.1115/1.2788872
    [18] FRANZEN R R, SCHNEIDEWIND P N. Observations concerning the penetration mechanics of tubular hypervelocity penetrators [J]. International Journal of Impact Engineering, 1991, 11(3): 289–303. doi: 10.1016/0734-743X(91)90040-M
    [19] WASMUND T L. New model to evaluate weapon effects and platform vulnerability: AJEM [J]. Wstiac Newsletter, 2001, 2: 1–3.
    [20] LEE W H, PAINTER J W. Material void-opening computation using particle method [J]. International Journal of Impact Engineering, 1999, 22(1): 1–22. doi: 10.1016/S0734-743X(98)00041-4
    [21] 甘云丹, 宋力, 杨黎明. 弹性体涂覆钢板抗冲击性能的数值模拟 [J]. 兵工学报, 2009(Suppl 2): 15–18

    GAN Y D, SONG L, YANG L M. Numerical simulation for anti-blast performances of steel plate coated with elastomer [J]. Acta Armamentarii, 2009(Suppl 2): 15–18
  • 加载中
图(17) / 表(4)
计量
  • 文章访问数:  8153
  • HTML全文浏览量:  3429
  • PDF下载量:  30
出版历程
  • 收稿日期:  2018-06-20
  • 修回日期:  2018-08-12

目录

    /

    返回文章
    返回